Evolution families and the Loewner equation II: complex hyperbolic manifolds
被引:62
|
作者:
Bracci, Filippo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, ItalyUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
Bracci, Filippo
[1
]
Contreras, Manuel D.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Seville, Escuela Tecn Super Ingn, Dept Matemat Aplicada 2, Seville 41092, SpainUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
Contreras, Manuel D.
[2
]
Diaz-Madrigal, Santiago
论文数: 0引用数: 0
h-index: 0
机构:
Univ Seville, Escuela Tecn Super Ingn, Dept Matemat Aplicada 2, Seville 41092, SpainUniv Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
Diaz-Madrigal, Santiago
[2
]
机构:
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
[2] Univ Seville, Escuela Tecn Super Ingn, Dept Matemat Aplicada 2, Seville 41092, Spain
We prove that evolution families on complex complete hyperbolic manifolds are in one to one correspondence with certain semicomplete non-autonomous holomorphic vector fields, providing the solution to a very general Loewner type differential equation on manifolds.