On r-hued list coloring of K4(7)-minor free graphs

被引:2
|
作者
Wei, Wenjuan [1 ]
Liu, Fengxia [1 ]
Xiong, Wei [1 ]
Lai, Hong-Jian [2 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Xinjiang, Peoples R China
[2] West Virginia Univ, Dept Math, Morgantown, WV 26506 USA
关键词
(L; r)-coloring; r-hued list chromatic number; Graph minor; EVERY PLANAR MAP; UPPER-BOUNDS; SQUARE;
D O I
10.1016/j.dam.2021.12.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a given list assignment L of a graph G, an (L, r)-coloring of G is a proper coloring c such that for any vertex v with degree d(v), v is adjacent to vertices of at least min{d(v), r} different color with c(v) is an element of L(v). The r-hued list chromatic number of G, denoted as chi(L,r)(G), is the least integer k, such that for any v is an element of V (G) and every list assignment L with |L(v)| = k, G has an (L, r)-coloring. Let K(r) = r + 3 if 2 <= r <= 3, K(r) = (sic)3r/2(sic) + 1 if r >= 4. In Song et al. (2014), it is proved that if G is a K4-minor-free graph, then chi L,r(G) <= K(r) + 1. Let K4(n) be the set of all subdivisions of K4 on n vertices. Utilizing the decompositions by Chen et al for K4(7)-minor free graphs in Chen et al. (2020), we prove that if G is a K4(7)-minor free graph, then chi L,r(G) <= K(r) + 1. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:301 / 309
页数:9
相关论文
共 50 条
  • [31] An algorithm on strong edge coloring of K4-minor free graphs
    Van Bommel, M.F.
    Wang, Ping
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2021, 116 : 303 - 314
  • [32] Edge DP-Coloring in K4-Minor Free Graphs and Planar Graphs
    He, Jingxiang
    Han, Ming
    AXIOMS, 2024, 13 (06)
  • [33] List-k-Coloring H-Free Graphs for All k &gt; 4
    Chudnovsky, Maria
    Hajebi, Sepehr
    Spirkl, Sophie
    COMBINATORICA, 2024, 44 (05) : 1063 - 1068
  • [34] List-coloring clique-hypergraphs of K5-minor-free graphs strongly
    Liang, Zuosong
    Wu, Jianliang
    Shan, Erfang
    DISCRETE MATHEMATICS, 2020, 343 (04)
  • [35] First-Fit coloring of {P5, K4 - e}-free graphs
    Choudum, S. A.
    Karthick, T.
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (06) : 620 - 626
  • [36] Vertex partitions of K4,4-minor free graphs
    Jorgensen, LK
    GRAPHS AND COMBINATORICS, 2001, 17 (02) : 265 - 274
  • [37] Vertex Partitions of K4,4-Minor Free Graphs
    Leif K. Jørgensen
    Graphs and Combinatorics, 2001, 17 : 265 - 274
  • [38] COLORING ALGORITHMS FOR K5-MINOR FREE GRAPHS
    KHULLER, S
    INFORMATION PROCESSING LETTERS, 1990, 34 (04) : 203 - 208
  • [39] The total coloring of K5-minor-free graphs
    Yang, Fan
    Wu, Jianliang
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 102
  • [40] The total coloring of K5-minor-free graphs
    Yang, Fan
    Wu, Jianliang
    arXiv, 2021,