Thermal, thermodynamic and exergoeconomic investigation of a parabolic trough collector utilizing nanofluids

被引:52
|
作者
Vahedi, Behzad [1 ]
Golab, Ehsan [2 ]
Sadr, Arsalan Nasiri [3 ]
Vafai, Kambiz [4 ]
机构
[1] Islamic Azad Univ, Dept Mech Engn Sci & Res Branch, Tehran, Iran
[2] Sharif Univ Technol SUT, Dept Mech Engn, Tehran, Iran
[3] Shahid Beheshti Univ SBU, Dept Mech & Energy Engn, Tehran, Iran
[4] Univ Calif Riverside, Mech Engn Dept, Riverside, CA 92521 USA
关键词
Parabolic trough solar collector; CFD Simulation; Nanofluid; Thermodynamic performance; Thermal performance; Exergoeconomic; CONVECTIVE HEAT-TRANSFER; AL2O3-WATER NANOFLUID; ENTROPY GENERATION; NATURAL-CONVECTION; NUMERICAL-ANALYSIS; SOLAR COLLECTOR; PERFORMANCE; RECEIVER; TRANSPORT; CONDUCTIVITY;
D O I
10.1016/j.applthermaleng.2022.118117
中图分类号
O414.1 [热力学];
学科分类号
摘要
The exploitation of solar energy facilitates the renewable energy paradigm. In this regard, parabolic trough collectors (PTC) are considered as a useful set-up to absorb solar energy. Simultaneous study of thermal, thermodynamic, and exergoeconomic performance of PTC systems paves the way for designers and manufacturers to not only have a better insight into understanding the underlying concepts about the operation of PTC systems but also to find the most effective and cost-effective circumstances. This study aims at analyzing a practical PTC system by considering an evacuated absorber tube with glass cover, non-uniform heat flux, and taking into account the convective and radiative heat losses. Obtained results demonstrate that employing the glass cover, especially in the low Reynolds numbers regime could remarkably reduce the heat losses up to 22%. The present analysis indicated that considering oil temperature-dependent properties reduced the friction factor around 94 % in the low Reynolds numbers regime compared to that of the cases based on constant properties. In this work a CFD code in the OpenFOAM software was developed to simulate both laminar and turbulent regimes with Lien cubic k -epsilon model (non-linear eddy viscosity model) by adding three types of nanoparticles (Al2O3, Cu, andSWCNT) individually into the synthetic oil. Moreover, the Buongiorno's model (BGM) which considers Brownian, thermophoresis, and turbulence diffusion phenomena was implemented to model the nanoparticles and base fluid interactions. It was found that adding nanoparticles and increasing the Reynolds number have no substantial impact on thermal efficiency of the system, whereas an optimum Reynolds number was found for exergy efficiency and net profit per unit transferred heat load (eta(p)) of the system. Although injecting SWCNT into pure oil led to augmentation of average convective heat transfer coefficient, PEC, and exergy efficiency, it was found not to be cost-effective. It was established that the obtained results by homogenous model (single-phase model) and BGM were roughly the same, with relative difference of less than 3.1 and 2.4% for the average Nusselt number and friction factor, respectively.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Thermal efficiency improvement of parabolic trough solar collector using different kinds of hybrid nanofluids
    Ajbar, Wassila
    Hernandez, J. A.
    Parrales, A.
    Torres, Lizeth
    CASE STUDIES IN THERMAL ENGINEERING, 2023, 42
  • [22] Thermal performance enhancement of nanofluids based parabolic trough solar collector (NPTSC) for sustainable environment
    Farooq, M.
    Farhan, M.
    Ahmad, Gulzar
    Tahir, Zia ul Rehman
    Usman, M.
    Sultan, M.
    Hanif, M. Saad
    Imran, M.
    Anwar, Saqib
    El-Sherbeeny, Ahmed M.
    Shakir, M. Ali
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (11) : 8943 - 8953
  • [23] Experimental investigation on novel parabolic trough collector
    Lingaiah G.
    Sridhar K.
    Lingaiah, G. (gajjelalingaiah@gmail.com), 1600, River Publishers (35): : 237 - 248
  • [24] Study on thermal performance of a parabolic trough collector
    Xiong, Ya-Xuan
    Wu, Yu-Ting
    Ma, Chong-Fang
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2012, 33 (11): : 1950 - 1953
  • [25] Thermal Performance Analysis of Parabolic Trough Collector
    Bhakta, Amit Kumar
    Kumar, Sunil
    Singh, Shailendra Narayan
    PROCEEDINGS OF THE 25TH NATIONAL AND 3RD INTERNATIONAL ISHMT-ASTFE HEAT AND MASS TRANSFER CONFERENCE, IHMTC 2019, 2019,
  • [26] Thermal, hydraulic and exergetic evaluation of a parabolic trough collector operating with thermal oil and molten salt based nanofluids
    Bellos, Evangelos
    Tzivanidis, Christos
    Tsimpoukis, Dimitrios
    ENERGY CONVERSION AND MANAGEMENT, 2018, 156 : 388 - 402
  • [27] Experimental investigation and thermodynamic analysis of application of hybrid nanofluid in a parabolic solar trough collector
    Wang, He
    Abed, Azher M.
    Beemkumar, N.
    Kumar, Ambati Vijay
    Ayed, Hamdi
    Mouldi, Abir
    Shamel, Ali
    JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (19):
  • [28] Exergetic, enviroeconomic and exergoeconomic (3E) assessment of a stationary parabolic trough solar collector with thermal storage
    Barbosa, Eloiny Guimaraes
    de Araujo, Marcos Eduardo Viana
    Zhang, Yuanhui
    Martins, Marcio Aredes
    SOLAR ENERGY, 2023, 255 : 487 - 496
  • [29] Evaluating the effect of using nanofluids on the parabolic trough collector's performance
    Moosavian, Seyed Farhan
    Hajinezhad, Ahmad
    Fattahi, Reza
    Shahee, Arash
    ENERGY SCIENCE & ENGINEERING, 2023, 11 (10) : 3512 - 3535
  • [30] Thermal performance evaluation of the parabolic trough solar collector using nanofluids: A case study in the desert of Algeria
    Benrezkallah, Anfal
    Marif, Yacine
    Soudani, Mohammed Elbar
    Belhadj, Mohamed Mustapha
    Hamidatou, Taha
    Mekhloufi, Naima
    Aouachir, Ahlam
    CASE STUDIES IN THERMAL ENGINEERING, 2024, 60