A hybrid spatio-temporal forecasting of solar generating resources for grid integration

被引:30
|
作者
Nam, SeungBeom [1 ]
Hur, Jin [1 ]
机构
[1] Sangmyung Univ, Dept Elect Engn, Seoul, South Korea
关键词
Solar generating resources; Hybrid spatio-temporal forecasting; Kriging; Naive Bayes classifier; VARIABILITY; WEATHER;
D O I
10.1016/j.energy.2019.04.127
中图分类号
O414.1 [热力学];
学科分类号
摘要
Recently, the installed solar generating resources have been increasing rapidly. Consequently, forecasting for solar generating resources are becoming an important work to integrate utility-scale solar generating resources into power systems. As solar generating resources are variable, uncontrollable, and uncertain, accurate and reliable forecasting enables higher penetrations of solar generating resources to be deployed on the electrical power grid. Accurate forecasting of solar resources contributes to evaluation of system reserves over large geographic area and to transmission system planning. To increase the penetration of solar generating resources on the electric power grid, the accurate power forecasting of geographically distributed solar generating resources is needed. In this paper, we propose a hybrid spatio-temporal forecasting of solar generating resources based on the naive Bayesian classifier approach and spatial modelling approach. To validate our forecasting model, we use the empirical data from the practical solar farms in South Korea. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:503 / 510
页数:8
相关论文
共 50 条
  • [31] MLP for Spatio-Temporal Traffic Volume Forecasting
    Dimara, Asimina
    Triantafyllidis, Dimitrios
    Krinidis, Stelios
    Kitsikoudis, Konstantinos
    Ioannidis, Dimosthenis
    Valkouma, Efthalia
    Skarvelakis, Stilianos
    Antipas, Stavros
    Tzovaras, Dimitrios
    2021 IEEE INTERNATIONAL IOT, ELECTRONICS AND MECHATRONICS CONFERENCE (IEMTRONICS), 2021, : 764 - 770
  • [32] Spatio-Temporal Network for Sea Fog Forecasting
    Park, Jinhyeok
    Lee, Young Jae
    Jo, Yongwon
    Kim, Jaehoon
    Han, Jin Hyun
    Kim, Kuk Jin
    Kim, Young Taeg
    Kim, Seoung Bum
    SUSTAINABILITY, 2022, 14 (23)
  • [33] Spatio-Temporal Transformer Network for Weather Forecasting
    Ji, Junzhong
    He, Jing
    Lei, Minglong
    Wang, Muhua
    Tang, Wei
    IEEE TRANSACTIONS ON BIG DATA, 2025, 11 (02) : 372 - 387
  • [34] Spatio-temporal Event Forecasting and Precursor Identification
    Ning, Yue
    Zhao, Liang
    Chen, Feng
    Lu, Chang-Tien
    Rangwala, Huzefa
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 3237 - 3238
  • [35] Spatio-temporal forecasting for the US Drought Monitor
    Erhardt, Robert
    Hepler, Staci
    Wolodkin, Daniel
    Greene, Andy
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2024, 73 (05) : 1203 - 1220
  • [36] Spatio-temporal graph mixformer for traffic forecasting
    Lablack, Mourad
    Shen, Yanming
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 228
  • [37] Spatio-temporal reconciliation of solar forecasts
    Di Fonzo, Tommaso
    Girolimetto, Daniele
    SOLAR ENERGY, 2023, 251 : 13 - 29
  • [38] Spatio-temporal hybrid Anderson localization
    Lobanov, V. E.
    Borovkova, O. V.
    Kartashov, Y. V.
    Szameit, A.
    EPL, 2014, 108 (06)
  • [39] Day-ahead spatio-temporal forecasting of solar irradiation along a navigation route
    Lan, Hai
    Yin, He
    Hong, Ying-Yi
    Wen, Shuli
    Yu, David C.
    Cheng, Peng
    APPLIED ENERGY, 2018, 211 : 15 - 27
  • [40] Establishment and Application of Unified Spatio-temporal Data Model of Power Grid Resources Based on Global Subdivision Grid
    Han B.
    Wang J.
    Qu T.
    Shao W.
    Yang H.
    Fan C.
    You Q.
    Zhang X.
    Dianwang Jishu/Power System Technology, 2022, 46 (10): : 3902 - 3912