On a class of boundary conditions splitting coupled thermo elasticity problems

被引:0
|
作者
Horák, JV [1 ]
机构
[1] Palacky Univ, Fac Sci, Dept Math Anal & Appl Math, Olomouc 77900, Czech Republic
来源
INTEGRAL METHODS IN SCIENCE AND ENGINEERING | 2002年
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:117 / 122
页数:6
相关论文
共 50 条
  • [21] Uniqueness theorem in coupled strain gradient elasticity with mixed boundary conditions
    Lidiia Nazarenko
    Rainer Glüge
    Holm Altenbach
    Continuum Mechanics and Thermodynamics, 2022, 34 : 93 - 106
  • [22] OPERATOR SPLITTING FOR ABSTRACT CAUCHY PROBLEMS WITH DYNAMICAL BOUNDARY CONDITIONS
    Csomos, Petra
    Ehrhardt, Matthias
    Farkas, Balint
    OPERATORS AND MATRICES, 2021, 15 (03): : 903 - 935
  • [23] Homogeneous problems of elasticity theory for different boundary conditions in the region of the angular cut of the boundary
    Frishter, L. Yu
    Petrov, I. Yu
    INTERNATIONAL SCIENTIFIC CONFERENCE ENERGY MANAGEMENT OF MUNICIPAL FACILITIES AND SUSTAINABLE ENERGY TECHNOLOGIES, 2020, 1614
  • [24] Parallel computing of thermo elasticity problems
    Kohut, R
    Stary, J
    Blaheta, R
    Krecmer, K
    LARGE-SCALE SCIENTIFIC COMPUTING, 2006, 3743 : 671 - 678
  • [25] The method of fundamental solutions for problems in static thermo-elasticity with incomplete boundary data
    Marin, L.
    Karageorghis, A.
    Lesnic, D.
    Johansson, B. T.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2017, 25 (05) : 652 - 673
  • [26] IPIES for Uncertainly Defined Shape of Boundary, Boundary Conditions and Other Parameters in Elasticity Problems
    Kapturczak, Marta
    Zieniuk, Eugeniusz
    COMPUTATIONAL SCIENCE - ICCS 2019, PT V, 2019, 11540 : 261 - 268
  • [27] Exact solution of coupled mixed diffusion problems with coupled boundary conditions
    Camacho, J
    Jodar, L
    Navarro, E
    MATHEMATICAL AND COMPUTER MODELLING, 1998, 28 (01) : 65 - 76
  • [28] On the eigenvalue problems for differential operators with coupled boundary conditions
    Sajavicius, S.
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2010, 15 (04): : 493 - 500
  • [29] Dissipative boundary conditions for finite-difference problems in elasticity theory
    Baev A.V.
    Obloukhov A.O.
    Computational Mathematics and Modeling, 2005, 16 (4) : 349 - 357
  • [30] THE INVERSE PROBLEM OF COUPLED THERMO-ELASTICITY
    KOZLOV, V
    MAZYA, V
    FOMIN, A
    INVERSE PROBLEMS, 1994, 10 (01) : 153 - 160