Enhanced land use/cover classification using support vector machines and fuzzy k-means clustering algorithms

被引:18
|
作者
He, Tao [1 ,2 ]
Sun, Yu-Jun [1 ]
Xu, Ji-De [3 ]
Wang, Xue-Jun [4 ]
Hu, Chang-Ru [3 ]
机构
[1] Beijing Forestry Univ, Coll Forestry, Beijing 100083, Peoples R China
[2] Zhejiang A&F Univ, Dept Informat Engineer, Linan 311300, Peoples R China
[3] State Forestry Adm, Dept Forest Resources Management, Beijing 100714, Peoples R China
[4] State Forestry Inventory & Planning, Dept Forest Resources Monitor, Beijing 100714, Peoples R China
来源
关键词
land use/cover; classification; support vector machines; fuzzy k-means; normalized difference vegetation index; IMAGE CLASSIFICATION; COVER CLASSIFICATION; RESPONSES; TEXTURE; MODEL; PLUS;
D O I
10.1117/1.JRS.8.083636
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Land use/cover (LUC) classification plays an important role in remote sensing and land change science. Because of the complexity of ground covers, LUC classification is still regarded as a difficult task. This study proposed a fusion algorithm, which uses support vector machines (SVM) and fuzzy k-means (FKM) clustering algorithms. The main scheme was divided into two steps. First, a clustering map was obtained from the original remote sensing image using FKM; simultaneously, a normalized difference vegetation index layer was extracted from the original image. Then, the classification map was generated by using an SVM classifier. Three different classification algorithms were compared, tested, and verified-parametric (maximum likelihood), nonparametric (SVM), and hybrid (unsupervised-supervised, fusion of SVM and FKM) classifiers, respectively. The proposed algorithm obtained the highest overall accuracy in our experiments. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Empirical Evaluation of K-Means, Bisecting K-Means, Fuzzy C-Means and Genetic K-Means Clustering Algorithms
    Banerjee, Shreya
    Choudhary, Ankit
    Pal, Somnath
    2015 IEEE INTERNATIONAL WIE CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (WIECON-ECE), 2015, : 172 - 176
  • [22] Land cover change assessment using decision trees, support vector machines and maximum likelihood classification algorithms
    Otukei, J. R.
    Blaschke, T.
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2010, 12 : S27 - S31
  • [23] Soil data clustering by using K-means and fuzzy K-means algorithm
    Hot, Elma
    Popovic-Bugarin, Vesna
    2015 23RD TELECOMMUNICATIONS FORUM TELFOR (TELFOR), 2015, : 890 - 893
  • [24] A novel optimization parameters of support vector machines model for the land use/cover classification
    Liu, Ying
    Zhang, Bai
    Huang, Lihua
    Wang, Limin
    JOURNAL OF FOOD AGRICULTURE & ENVIRONMENT, 2012, 10 (02): : 1098 - 1104
  • [25] Cloning localization approach using k-means clustering and support vector machine
    Alfraih, Areej S.
    Briffa, Johann A.
    Wesemeyer, Stephan
    JOURNAL OF ELECTRONIC IMAGING, 2015, 24 (04)
  • [26] Hand Gesture Recognition Using K-Means Clustering and Support Vector Machine
    Maharani, Devira Anggi
    Fakhrurroja, Hanif
    Riyanto
    Machbub, Carmadi
    2018 IEEE SYMPOSIUM ON COMPUTER APPLICATIONS & INDUSTRIAL ELECTRONICS (ISCAIE 2018), 2018, : 1 - 6
  • [27] On Combining Support Vector Machines and Fuzzy K-Means in Vision-based Precision Agriculture
    Tellaeche, A.
    Burgos-Artizzu, X. P.
    Pajares, G.
    Ribeiro, A.
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 22, 2007, 22 : 33 - +
  • [28] Clustering Aluminum Smelting Potlines Using Fuzzy C-Means and K-Means Algorithms
    de Lima, Flavia A. N.
    de Souza, Alan M. F.
    Soares, Fabio M.
    Cardoso, Diego Lisboa
    de Oliveira, Roberto C. L.
    LIGHT METALS 2017, 2017, : 589 - 597
  • [29] A Comparative Study of K-Means, K-Means plus plus and Fuzzy C-Means Clustering Algorithms
    Kapoor, Akanksha
    Singhal, Abhishek
    2017 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE & COMMUNICATION TECHNOLOGY (CICT), 2017,
  • [30] Detection and Classification of Diabetic Retinopathy Using K-Means Clustering and Fuzzy Logic
    Jahiruzzaman, Md.
    Hossain, A. B. M. Aowlad
    2015 18TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY (ICCIT), 2015, : 534 - 538