Hardy type inequalities for Δλ-Laplacians

被引:32
|
作者
Kogoj, Alessia E. [1 ,3 ]
Sonner, Stefanie [2 ,3 ]
机构
[1] Univ Bologna, Dipartimento Matemat, Piazza Porta San Donato 5, IT-40126 Bologna, Italy
[2] Univ Kaiserslautern, Felix Klein Ctr Math, Paul Ehrlich Str 31, D-67663 Kaiserslautern, Germany
[3] BCAM Basque Ctr Appl Math, Mazarredo 14, E-48009 Bilbao, Basque Country, Spain
关键词
Hardy inequalities; sub-elliptic operators; Grushin operator; ELLIPTIC DIFFERENTIAL-OPERATORS; GRUSHIN TYPE OPERATORS; PARABOLIC EQUATIONS; VECTOR-FIELDS; HEAT-EQUATION; ATTRACTORS; BEHAVIOR;
D O I
10.1080/17476933.2015.1088530
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive Hardy- type inequalities for a large class of sub- elliptic operators that belong to the class of .- Laplacians and find explicit values for the constants involved. Our results generalize previous inequalities obtained for Grushin- type operators x + | x| 2a y, ( x, y). R N1 x R N2, a = 0, which were proved to be sharp.
引用
收藏
页码:422 / 442
页数:21
相关论文
共 50 条
  • [1] Hardy inequalities for Robin Laplacians
    Kovarik, Hynek
    Laptev, Ari
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (12) : 4972 - 4985
  • [2] Hardy inequalities for magnetic p-Laplacians
    Cazacu, Cristian
    Krejcirik, David
    Lam, Nguyen
    Laptev, Ari
    NONLINEARITY, 2024, 37 (03)
  • [3] ON EXTENSION PROBLEM, TRACE HARDY AND HARDY'S INEQUALITIES FOR SOME FRACTIONAL LAPLACIANS
    Boggarapu, Pradeep
    Roncal, Luz
    Thangavelu, Sundaram
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (05) : 2575 - 2605
  • [4] Hardy and Rellich inequalities for anisotropic p-sub-Laplacians
    M. Ruzhansky
    B. Sabitbek
    D. Suragan
    Banach Journal of Mathematical Analysis, 2020, 14 : 380 - 398
  • [5] Hardy inequalities for p-Laplacians with Robin boundary conditions
    Ekholm, Tomas
    Kovarik, Hynek
    Laptev, Ari
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 128 : 365 - 379
  • [6] Hardy and Rellich inequalities for anisotropic p-sub-Laplacians
    Ruzhansky, M.
    Sabitbek, B.
    Suragan, D.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 14 (02) : 380 - 398
  • [7] On Hardy type inequalities
    Balinsky, Alexander A.
    Tyukov, Alexey E.
    RECENT ADVANCES IN DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2006, 412 : 69 - 77
  • [8] Improved Hardy inequalities and weighted Hardy type inequalities with spherical derivatives
    Nguyen Tuan Duy
    Nguyen Lam
    Le Long Phi
    Revista Matemática Complutense, 2022, 35 : 1 - 23
  • [9] Improved Hardy inequalities and weighted Hardy type inequalities with spherical derivatives
    Nguyen Tuan Duy
    Nguyen Lam
    Le Long Phi
    REVISTA MATEMATICA COMPLUTENSE, 2022, 35 (01): : 1 - 23
  • [10] HARDY TYPE INEQUALITIES ON BALLS
    Machihara, Shuji
    Ozawa, Tohru
    Wadade, Hidemitsu
    TOHOKU MATHEMATICAL JOURNAL, 2013, 65 (03) : 321 - 330