Critical properties in long-range hopping Hamiltonians

被引:7
|
作者
Cuevas, E [1 ]
机构
[1] Univ Murcia, Dept Fis, E-30071 Murcia, Spain
来源
关键词
D O I
10.1002/pssb.200404783
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Some properties of d-dimensional disordered models with long-range random hopping amplitudes are investigated numerically at criticality. We concentrate on the correlation dimension d(2) (for d = 2) and the nearest level spacing distribution P-c(s) (for d = 3) in both the weak (b(d) much greater than 1) and the strong (b(d) much less than 1) coupling regime, where the parameter b(-d) plays the role of the coupling constant of the model. It is found that (i) the extrapolated values of d(2) are of the form d(2) = C(d)b(d) in the strong coupting limit and d(2) = d - a(d)/b(d) in the case of weak coupling, and (ii) P-c(s) has the asymptotic form P-c(s) similar to exp (-A(d)S(a)) for s much greater than 1, with the critical exponent a = 2 - a(d)/b(d) for b(d) much greater than 1 and a = 1 + C(d)b(d) for b(d) much less than 1. In these cases the numerical coefficients A(d), a(d) and c(d) depend only on the dimensionality. (C) 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:2109 / 2117
页数:9
相关论文
共 50 条
  • [21] EXACT RESULTS FOR A HUBBARD CHAIN WITH LONG-RANGE HOPPING
    GEBHARD, F
    RUCKENSTEIN, AE
    PHYSICAL REVIEW LETTERS, 1992, 68 (02) : 244 - 247
  • [22] ON THE THEORY OF LONG-RANGE ELECTRON HOPPING IN POLAR MEDIA
    KUZNETSOV, AM
    ULSTRUP, J
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1982, 114 (02): : 673 - 683
  • [24] Ferromagnetism in the Hubbard model with long-range and correlated hopping
    Farkasovsky, P
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2004, 54 : D419 - D422
  • [25] CRITICAL PROPERTIES OF SYSTEMS WITH TRANSVERSE LONG-RANGE CORRELATED DISORDER
    DECESARE, L
    PHYSICS LETTERS A, 1994, 186 (1-2) : 179 - 182
  • [26] Totally asymmetric exclusion process with long-range hopping
    Szavits-Nossan, J.
    Uzelac, K.
    PHYSICAL REVIEW E, 2006, 74 (05):
  • [27] Nonergodicity and central-limit behavior for long-range Hamiltonians
    Pluchino, A.
    Rapisarda, A.
    Tsallis, C.
    EPL, 2007, 80 (02)
  • [28] Destruction of long-range order by quenching of the hopping range in one dimension
    Tezuka, Masaki
    Garcia-Garcia, Antonio M.
    Cazalilla, Miguel A.
    PHYSICAL REVIEW A, 2014, 90 (05):
  • [29] Complexity Phase Diagram for Interacting and Long-Range Bosonic Hamiltonians
    Maskara, Nishad
    Deshpande, Abhinav
    Ehrenberg, Adam
    Tran, Minh C.
    Fefferman, Bill
    Gorshkov, Alexey, V
    PHYSICAL REVIEW LETTERS, 2022, 129 (15)
  • [30] Quantum Time Crystals from Hamiltonians with Long-Range Interactions
    Kozin, Valerii K.
    Kyriienko, Oleksandr
    PHYSICAL REVIEW LETTERS, 2019, 123 (21)