Efficient Bayesian designs under heteroscedasticity

被引:5
|
作者
Tack, L [1 ]
Goos, P [1 ]
Vandebroek, M [1 ]
机构
[1] Catholic Univ Louvain, Fac Econ & Appl Econ, B-3000 Louvain, Belgium
关键词
Bayesian design; D-optimality; experimental design; heteroscedasticity;
D O I
10.1016/S0378-3758(01)00256-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In Optimum design theory designs arc constructed that maximize the information on the unknown parameters of the response function. The major part deals with designs optimal for response function estimation under the assumption of homoscedasticity. In this paper, optimal designs are derived in case of multiplicative heteroscedasticity for either response function estimation or response and variance function estimation by using a Bayesian approach. The efficiencies of the Bayesian designs derived with various priors are compared to those of the classic designs with respect to various variance functions. The results show that any prior knowledge about the sign of the variance function parameters leads to designs that are considerably more efficient than the classic ones based on homoscedastic assumptions. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:469 / 483
页数:15
相关论文
共 50 条
  • [21] On the Functional Approach to Bayesian Efficient Designs for Nonlinear Regression Models
    Melas, Viatcheslav B.
    Shpilev, Petr
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2012, 41 (16-17) : 2908 - 2921
  • [22] D-efficient Bayesian designs for a class of nonlinear models
    Melas V.B.
    Staroselskiy Y.M.
    Journal of Statistical Theory and Practice, 2008, 2 (4) : 569 - 587
  • [23] Bayesian causal effects in quantiles: Accounting for heteroscedasticity
    Chen, Cathy W. S.
    Gerlach, Richard
    Wei, D. C. M.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (06) : 1993 - 2007
  • [24] Regression Models with Heteroscedasticity using Bayesian Approach
    Cepeda Cuervo, Edilberto
    Achcar, Jorge Alberto
    REVISTA COLOMBIANA DE ESTADISTICA, 2009, 32 (02): : 267 - 287
  • [25] Bayesian computation for parametric models of heteroscedasticity in the linear model
    Boscardin, WJ
    Gelman, A
    ADVANCES IN ECONOMETRICS, 1996, 11 : 87 - 109
  • [26] Efficient Estimation for Models With Nonlinear Heteroscedasticity
    Xu, Zhanxiong
    Zhao, Zhibiao
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (04) : 1498 - 1508
  • [27] Bayesian Local Influence for Spatial Autoregressive Models with Heteroscedasticity
    Xiaowen Dai
    Libin Jin
    Maozai Tian
    Lei Shi
    Statistical Papers, 2019, 60 : 1423 - 1446
  • [28] Bayesian Local Influence for Spatial Autoregressive Models with Heteroscedasticity
    Dai, Xiaowen
    Jin, Libin
    Tian, Maozai
    Shi, Lei
    STATISTICAL PAPERS, 2019, 60 (05) : 1423 - 1446
  • [29] Bayesian Modelling of Time-Varying Conditional Heteroscedasticity
    Karmakar, Sayar
    Roy, Arkaprava
    BAYESIAN ANALYSIS, 2021, 16 (04): : 1157 - 1185
  • [30] Efficient Bayesian inference under the structured coalescent
    Vaughan, Timothy G.
    Kuehnert, Denise
    Popinga, Alex
    Welch, David
    Drummond, Alexei J.
    BIOINFORMATICS, 2014, 30 (16) : 2272 - 2279