2-Universally complete Riesz spaces and inverse-closed Riesz spaces

被引:2
|
作者
Montalvo, F. [1 ]
Pulgarin, A. [1 ]
Requejo, B. [1 ]
机构
[1] Univ Extremadura, Dept Matemat, Badajoz 06071, Spain
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2006年 / 17卷 / 02期
关键词
D O I
10.1016/S0019-3577(06)80022-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we show mainly two results about uniformly closed Riesz subspaces of R-X containing the constant functions. First, for such a Riesz subspace E, we solve the problem of determining the properties that a real continuous function phi defined on a proper open interval of R should have in order that the conditions "E is closed under composition with phi" and "E is closed under inversion in X" become equivalent. The second result, reformulated in the more general frame of the Archimedean Riesz spaces with weak order unit e, establishes that E (e-uniformly complete and e-semisimple) is closed under inversion in C(Spec E) if and only if E is 2-universally e-complete.
引用
收藏
页码:285 / 295
页数:11
相关论文
共 50 条
  • [41] Burkholder Inequalities in Riesz spaces
    Azouzi, Youssef
    Ramdane, Kawtar
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2017, 28 (05): : 1076 - 1094
  • [42] ON BOUNDEDLY ORDER-COMPLETE LOCALLY SOLID RIESZ SPACES
    LABUDA, I
    STUDIA MATHEMATICA, 1985, 81 (03) : 245 - 258
  • [43] THE RIESZ ASPECTS OF chi(2) SEQUENCE SPACES
    Subramanian, Nagarajan
    Misra, Umakanta
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2012, 36 (02): : 277 - 286
  • [44] Positive polynomials on Riesz spaces
    James Cruickshank
    John Loane
    Raymond A. Ryan
    Positivity, 2017, 21 : 885 - 895
  • [45] RIESZ BASES IN WEIGHTED SPACES
    Putintseva, A. A.
    UFA MATHEMATICAL JOURNAL, 2011, 3 (01): : 45 - 50
  • [46] UNUSUAL NORMED RIESZ SPACES
    HOLBROOK, JA
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1967, 70 (02): : 213 - &
  • [47] Probabilistic Normed Riesz Spaces
    Celaleddin SENCMEN
    Serpil PEHLVAN
    ActaMathematicaSinica, 2012, 28 (07) : 1401 - 1410
  • [48] Pointfree Spectra of Riesz Spaces
    M. M. Ebrahimi
    A. Karimi
    M. Mahmoudi
    Applied Categorical Structures, 2004, 12 : 397 - 409
  • [49] RIESZ SPACES OF MEASURES ON SEMIRINGS
    Ercan, Z.
    MATEMATICKI VESNIK, 2009, 61 (03): : 235 - 239
  • [50] On (in)dependence measures in Riesz spaces
    Krajewska, Elzbieta
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 491 (01)