We examine minimality in asymmetry classes of convex compact sets with respect to inclusion. We prove that each class has a minimal element. Moreover, we show there is a connection between asymmetry classes and the Radstrom-Hormander lattice. This is used to present an alternative solution to the problem of minimality posed by G. Ewald and G. C. Shephard in [4].
机构:
Univ Lille, Lab Paul Painleve, CNRS, UMR 8524, F-59000 Lille, France
Katholieke Univ Leuven, Dept Math, B-3001 Leuven, BelgiumUniv Lille, Lab Paul Painleve, CNRS, UMR 8524, F-59000 Lille, France
Cluckers, Raf
Halupczok, Immanuel
论文数: 0引用数: 0
h-index: 0
机构:
Heinrich Heine Univ Dusseldorf, Math Inst, Lehrstuhl Algebra & Zahlentheorie, Univ Str 1, D-40225 Dusseldorf, GermanyUniv Lille, Lab Paul Painleve, CNRS, UMR 8524, F-59000 Lille, France
Halupczok, Immanuel
Rideau-Kikuchi, Silvain
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris, F-75013 Paris, France
Sorbonne Univ, IMJ PRG, CNRS, F-75013 Paris, FranceUniv Lille, Lab Paul Painleve, CNRS, UMR 8524, F-59000 Lille, France