Using Artificial Neural Network and Multiple Linear Regression for Predicting the Chlorophyll Concentration Index of Saint John's Wort Leaves

被引:13
|
作者
Odabas, Mehmet Serhat [1 ]
Kayhan, Gokhan [2 ]
Ergun, Erhan [2 ]
Senyer, Nurettin [2 ]
机构
[1] Ondokuz Mayis Univ, Bafra Vocat Sch, TR-55400 Bafra, Samsun, Turkey
[2] Ondokuz Mayis Univ, Fac Engn, Dept Comp Engn, TR-55400 Bafra, Samsun, Turkey
关键词
Artificial neural network; chlorophyll concentration index; Hypericum perforatum L; modeling; precision agriculture; SYSTEM;
D O I
10.1080/00103624.2015.1104342
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
This research investigates and compares artificial neural network and multiple linear regression for predicting the chlorophyll concentration index of Saint John's wort leaves (Hypericum perforatum L.). Plants were fertilized with 0, 30, 60, 90, and 120kgha(-1) nitrogen [34% nitrogen ammonium nitrate (NH4NO3)]. Chlorophyll concentration index of each leaf was measured using SPAD meter. Afterwards, rgb (red, green, and blue color) values of all leaf images were determined by image processing. Values obtained were modeled using both multiple regression analysis and artificial neural networks. Using multiple regression analysis R-2 values were between 0.61 and 0.97. Coefficient of determination values (R-2) using artificial neutral network values were found to be 0.99. Artificial neutral network modeling successfully described the relationship between actual chlorophyll concentration index values and predicted chlorophyll concentration index values.
引用
收藏
页码:237 / 245
页数:9
相关论文
共 50 条
  • [31] Combining principal component regression and artificial neural network to predict chlorophyll-a concentration of Yuqiao Reservoir's outflow
    College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
    不详
    Trans. Tianjin Univ., 6 (467-472):
  • [32] Predicting the tensile strength of single wool fibers using artificial neural network and multiple linear regression models based on acoustic emission
    Lu, Di
    Yu, Weidong
    TEXTILE RESEARCH JOURNAL, 2021, 91 (5-6) : 533 - 542
  • [33] Identification of the relevant input variables for predicting the parabolic trough solar collector's outlet temperature using an artificial neural network and a multiple linear regression model
    Ajbar, Wassila
    Parrales, A.
    Silva-Martinez, S.
    Bassam, A.
    Jaramillo, O. A.
    Hernandez, J. A.
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2021, 13 (04)
  • [34] Prediction of water quality index using artificial neural network and multiple linear regression modelling approach in Shivganga River basin, India
    Kadam, A. K.
    Wagh, V. M.
    Muley, A. A.
    Umrikar, B. N.
    Sankhua, R. N.
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2019, 5 (03) : 951 - 962
  • [35] Prediction of water quality index using artificial neural network and multiple linear regression modelling approach in Shivganga River basin, India
    A. K. Kadam
    V. M. Wagh
    A. A. Muley
    B. N. Umrikar
    R. N. Sankhua
    Modeling Earth Systems and Environment, 2019, 5 : 951 - 962
  • [36] Predicting heat stress index in Sasso hens using automatic linear modeling and artificial neural network
    Yakubu, A.
    Oluremi, O. I. A.
    Ekpo, E. I.
    INTERNATIONAL JOURNAL OF BIOMETEOROLOGY, 2018, 62 (07) : 1181 - 1186
  • [37] Modeling daily chlorophyll a dynamics in a German lowland river using artificial neural networks and multiple linear regression approaches
    Naicheng Wu
    Jiacong Huang
    Britta Schmalz
    Nicola Fohrer
    Limnology, 2014, 15 : 47 - 56
  • [38] Predicting heat stress index in Sasso hens using automatic linear modeling and artificial neural network
    A. Yakubu
    O. I. A. Oluremi
    E. I. Ekpo
    International Journal of Biometeorology, 2018, 62 : 1181 - 1186
  • [39] Modeling daily chlorophyll a dynamics in a German lowland river using artificial neural networks and multiple linear regression approaches
    Wu, Naicheng
    Huang, Jiacong
    Schmalz, Britta
    Fohrer, Nicola
    LIMNOLOGY, 2014, 15 (01) : 47 - 56
  • [40] Artificial neural network and multiple linear regression modeling for predicting thermal transmittance of plain-woven cotton fabric
    Akter, Mahmuda
    Khalil, Elias
    Uddin, Md. Haris
    Chowdhury, Md. Kamrul Hassan
    Hasan, Shah Md. Maruf
    TEXTILE RESEARCH JOURNAL, 2024, 94 (11-12) : 1279 - 1296