Exploiting Spatio-Temporal Structure With Recurrent Winner-Take-All Networks

被引:6
|
作者
Santana, Eder [1 ]
Emigh, Matthew S. [1 ]
Zegers, Pablo [2 ]
Principe, Jose C. [1 ]
机构
[1] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
[2] Univ Los Andes, Fac Ingn & Ciencias Aplicadas, Santiago 7620001, Chile
关键词
Convolutional recurrent neural networks (ConvRNNs); deep learning; object recognition; unsupervised learning; winner-take-all (WTA);
D O I
10.1109/TNNLS.2017.2735903
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a convolutional recurrent neural network (ConvRNNs), with winner-take-all (WTA) dropout for high-dimensional unsupervised feature learning in multidimensional time series. We apply the proposed method for object recognition using temporal context in videos and obtain better results than comparable methods in the literature, including the deep predictive coding networks (DPCNs) previously proposed by Chalasani and Principe. Our contributions can be summarized as a scalable reinterpretation of the DPCNs trained end-to-end with backpropagation through time, an extension of the previously proposed WTA autoencoders to sequences in time, and a new technique for initializing and regularizing ConvRNNs.
引用
收藏
页码:3738 / 3746
页数:9
相关论文
共 50 条
  • [21] High Precision Winner-Take-All Circuit for Neural Networks
    Paudel, Bijay Raj
    Wang, Haibo
    Tragoudas, Spyros
    Rijal, Omkar
    2023 IEEE 36TH INTERNATIONAL SYSTEM-ON-CHIP CONFERENCE, SOCC, 2023, : 36 - 41
  • [22] DYNAMIC WINNER-TAKE-ALL CONFLICT
    Reuveny, Rafael
    Maxwell, John W.
    Davis, Jefferson
    DEFENCE AND PEACE ECONOMICS, 2011, 22 (05) : 471 - 492
  • [23] On the computational power of winner-take-all
    Maass, W
    NEURAL COMPUTATION, 2000, 12 (11) : 2519 - 2535
  • [24] Group sparse coding with a collection of winner-take-all networks
    Eva L Dyer
    Ueli Rutishauser
    Richard G Baraniuk
    BMC Neuroscience, 13 (Suppl 1)
  • [25] A Multifactor Winner-Take-All Dynamics
    Zhu, Junmei
    NEURAL COMPUTATION, 2011, 23 (07) : 1835 - 1861
  • [26] INTERFERENCE PROCEEDINGS - WINNER-TAKE-ALL
    SILVERMAN, AB
    JOM-JOURNAL OF THE MINERALS METALS & MATERIALS SOCIETY, 1991, 43 (01): : 54 - 54
  • [27] A fast winner-take-all neural networks with the dynamic ratio
    Chen, CM
    Hsu, MH
    Wang, TY
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2002, 18 (02) : 211 - 222
  • [28] Winner-take-all price competition
    Michael R. Baye
    John Morgan
    Economic Theory, 2002, 19 : 271 - 282
  • [29] Winner-take-all price competition
    Baye, MR
    Morgan, J
    ECONOMIC THEORY, 2002, 19 (02) : 271 - 282
  • [30] Alternatives to the winner-take-all society
    不详
    FUTURIST, 1996, 30 (03) : 43 - 44