Ensemble-Based Deep Learning Model for Network Traffic Classification

被引:17
|
作者
Aouedi, Ons [1 ]
Piamrat, Kandaraj [1 ]
Parrein, Benoit [1 ]
机构
[1] Univ Nantes, UMR 6004 LS2N, Nantes, France
关键词
Blending; traffic classification; ensemble learning; machine learning; deep learning; decision tree; CLASSIFIERS;
D O I
10.1109/TNSM.2022.3193748
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Network Traffic Classification enables a number of practical applications ranging from network monitoring to resource management, with security implications as well. Nowadays, traffic classification has become a challenging task in order to distinguish among a variety of applications due to the huge amount of generated traffic. Therefore, developing Machine Learning (ML) models, which can successfully identify network applications, is one of the most important tasks. However, among the ML models applied to network traffic classification so far, no model outperforms all the others. To solve these issues, this paper proposes a novel Deep Learning (DL)-based approach that incorporates multiple Decision Tree based models. This approach employs a non-linear blending ensemble method by combining tree-based classifiers through DL in order to maximize generalization accuracy. This ensemble consists of two levels called base classifiers and meta-classifiers. In the first level, Decision Tree-based models are used as the base classifiers while in the second level, DL is used as a meta-model to combine the outputs of the base classifiers. Using two publicly available datasets, we show that our proposed ensemble is suitable for network traffic classification and outperforms the linear blending (using logistic regression as meta-model) as well as several well-known ML models, which are Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), Multi-Layer Perceptron (MLP), AdaBoost, K-Nearest Neighbors (KNN), LightGBM, Catboost, and XGBoost.
引用
收藏
页码:4124 / 4135
页数:12
相关论文
共 50 条
  • [21] Network traffic classification based on ensemble learning and co-training
    He HaiTao
    Luo XiaoNan
    Ma FeiTeng
    Che ChunHui
    Wang JianMin
    SCIENCE IN CHINA SERIES F-INFORMATION SCIENCES, 2009, 52 (02): : 338 - 346
  • [22] Lightweight Traffic Classification Model Based on Deep Learning
    Sun, Chongxin
    Chen, Bo
    Bu, Youjun
    Zhang, Surong
    Zhang, Desheng
    Jiang, Bingbing
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [23] An Online Network Traffic Classification Method Based on Deep Learning
    Liao, Qing
    Li, Tianqi
    Zhang, Wei
    PROCEEDINGS OF 2019 IEEE 2ND INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION AND COMMUNICATION TECHNOLOGY (ICEICT 2019), 2019, : 34 - 39
  • [24] Ensemble-Based Deep Metric Learning for Few-Shot Learning
    Zhou, Meng
    Li, Yaoyi
    Lu, Hongtao
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT I, 2020, 12396 : 406 - 418
  • [25] A Network Traffic Classification Model Based on Metric Learning
    Chen, Mo
    Wang, Xiaojuan
    He, Mingshu
    Jin, Lei
    Javeed, Khalid
    Wang, Xiaojun
    CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 64 (02): : 941 - 959
  • [26] A network traffic classification model based on metric learning
    Chen M.
    Wang X.
    He M.
    Jin L.
    Javeed K.
    Wang X.
    Computers, Materials and Continua, 2020, 64 (02): : 941 - 959
  • [27] Deep Ensemble-based Efficient Framework for Network Attack Detection
    Rustam, Furqan
    Raza, Ali
    Ashraf, Imran
    Jurcut, Anca Delia
    2023 21ST MEDITERRANEAN COMMUNICATION AND COMPUTER NETWORKING CONFERENCE, MEDCOMNET, 2023, : 1 - 10
  • [28] Improved Network Traffic Classification Using Ensemble Learning
    Possebon, Isadora P.
    Silva, Anderson S.
    Granville, Lisandro Z.
    Schaeffer-Filho, Alberto
    Marnerides, Angelos
    2019 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (ISCC), 2019, : 431 - 436
  • [29] Ensemble-based deep meta learning for medical image segmentation
    Ahmed, Usman
    Lin, Jerry Chun-Wei
    Srivastava, Gautam
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (05) : 4307 - 4313
  • [30] DeepfakeStack: A Deep Ensemble-based Learning Technique for Deepfake Detection
    Rana, Md Shohel
    Sung, Andrew H.
    2020 7TH IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND CLOUD COMPUTING (CSCLOUD 2020)/2020 6TH IEEE INTERNATIONAL CONFERENCE ON EDGE COMPUTING AND SCALABLE CLOUD (EDGECOM 2020), 2020, : 70 - 75