The LOFAR Telescope: System Architecture and Signal Processing

被引:137
|
作者
de Vos, Marco [1 ]
Gunst, Andre W. [1 ]
Nijboer, Ronald [1 ]
机构
[1] ASTRON, NL-7990 AA Dwingeloo, Netherlands
关键词
Aperture synthesis; low-frequency astronomy; multibeaming; phased array; radio astronomy;
D O I
10.1109/JPROC.2009.2020509
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Low Frequency Array (LOFAR) is a large distributed radio telescope, consisting of phased array antenna stations that are combined in an aperture synthesis array. Antenna stations consist of many simple, omnidirectional antennas. Flexible station-based signal processing allows for trading bandwidth against instantaneous sky coverage. Central processing implements a software correlator, which can be reconfigured as a full tied array beamformer, and online calibration functions to handle the large data streams produced by the system. The key science programs for LOFAR challenge the technical specifications in several directions, which resulted in a highly reconfigurable architecture. This paper describes the LOFAR system design, the configuration, and the signal-processing chain. LOFAR has been developed by ASTRON and a consortium of universities and industrial partners. The instrument is currently being deployed in The Netherlands. Additional stations are being built in several other European countries. The telescope is considered an important pathfinder for the Square Kilometer Array (SKA) in demonstrating the potential of (sparse) aperture arrays, in developing solutions to major calibration issues that are directly applicable to the SKA, and in paving the way for the mass-production and operations of such large distributed radio telescope systems.
引用
收藏
页码:1431 / 1437
页数:7
相关论文
共 50 条
  • [31] Probing ionospheric structures using the LOFAR radio telescope
    Mevius, M.
    van der Tol, S.
    Pandey, V. N.
    Vedantham, H. K.
    Brentjens, M. A.
    de Bruyn, A. G.
    Abdalla, F. B.
    Asad, K. M. B.
    Bregman, J. D.
    Brouw, W. N.
    Bus, S.
    Chapman, E.
    Ciardi, B.
    Fernandez, E. R.
    Ghosh, A.
    Harker, G.
    Iliev, I. T.
    Jelic, V.
    Kazemi, S.
    Koopmans, L. V. E.
    Noordam, J. E.
    Offringa, A. R.
    Patil, A. H.
    van Weeren, R. J.
    Wijnholds, S.
    Yatawatta, S.
    Zaroubi, S.
    RADIO SCIENCE, 2016, 51 (07) : 927 - 941
  • [32] Digital signal processing system of the PRAO RT 60/150 radio telescope antenna unit
    Logvinenko, SV
    Dagkesamanskiy, RD
    Izvekova, VA
    Kostromin, VI
    Kutuzov, SM
    Litvinov, II
    14th International Crimean Conference: Microwave & Telecommunication Technology, Conference Proceedings, 2004, : 762 - 763
  • [33] A DATA PROCESSING SYSTEM FOR MESON TELESCOPE
    KOKH, I
    SHOMODI, A
    VAGNER, I
    VALASH, D
    VARGA, A
    IZVESTIYA AKADEMII NAUK SSSR SERIYA FIZICHESKAYA, 1969, 33 (11): : 1930 - &
  • [34] Antenna Phase Center Analysis for the LOFAR Radio Telescope
    Di Ninni, P.
    Bolli, P.
    Nesti, R.
    Virone, G.
    Pupillo, G.
    Wijnholds, S. J.
    2019 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND USNC-URSI RADIO SCIENCE MEETING, 2019, : 405 - 406
  • [35] A Unified Receiver Signal Processing Architecture for All Modes of the DTMB Broadcasting System
    Bourdoux, Andre
    Li, Min
    Cappelle, Hans
    Amin, Amir
    Appeltans, Raf
    Folens, Andy
    Dejonghe, Antoine
    2013 IEEE 24TH INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2013, : 651 - 656
  • [36] ARCHITECTURE OF COMPUTERIZED TIMING SYSTEM FOR LASER-RANGING SIGNAL-PROCESSING
    ARTYUKH, YN
    AVTOMATIKA I VYCHISLITELNAYA TEKHNIKA, 1993, (02): : 86 - 89
  • [37] Implementation architecture of signal processing in pulse Doppler radar system based on FPGA
    Yang, Ming
    Yang, Jing
    Hou, Yanan
    Jin, Cheng
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (21): : 7335 - 7338
  • [38] Reconfigurable Embedded System Architecture for Next-Generation Neural Signal Processing
    Balasubramanian, Karthikeyan
    Obeid, Iyad
    2010 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2010, : 1691 - 1694
  • [39] On the Possibility of Using LOFAR Radio Telescope for Passive Radiolocation
    Klos, Julia
    Droszcz, Aleksander
    Jedrzejewski, Konrad
    Kulpa, Krzysztof
    Pozoga, Mariusz
    2020 21ST INTERNATIONAL RADAR SYMPOSIUM (IRS 2020), 2020, : 73 - 76
  • [40] Compressed sensing imaging reconstruction for the LOFAR Radio Telescope
    Garsden, Hugh
    Starck, Jean-Luc
    Corbel, Stephane
    Tasse, Cyril
    Woiselle, Arnaud
    WAVELETS AND SPARSITY XV, 2013, 8858