Problem of a billiard in symmetric coordinates

被引:4
|
作者
Naydenov, SV [1 ]
Yanovsky, VV
Tur, AV
机构
[1] Natl Acad Sci Ukraine, Inst Single Crystals, UA-61001 Kharkov, Ukraine
[2] UPS, CNRS, Ctr Etud Spatiale Rayonnements, F-31028 Toulouse 4, France
关键词
D O I
10.1134/1.1490016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Billiards are an important geometric model in nonlinear physics. A dynamical description of a billiard in symmetric coordinates is proposed. The topological structure of a symmetric phase space and geometric criteria for the stochasticity of billiard systems are determined. (C) 2002 MAIK "Nauka / Interperiodica".
引用
收藏
页码:426 / 431
页数:6
相关论文
共 50 条
  • [31] Multiple solutions of the Dirichlet problem in multidimensional billiard spaces
    Gabor, Grzegorz
    Tomecek, Jan
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2023, 25 (01)
  • [32] Multiple solutions of the Dirichlet problem in multidimensional billiard spaces
    Grzegorz Gabor
    Jan Tomeček
    Journal of Fixed Point Theory and Applications, 2023, 25
  • [33] NULL COORDINATES FOR SPHERICALLY SYMMETRIC GRAVITATIONAL COLLAPSE
    DELACRUZ, V
    PHYSICS LETTERS, 1966, 22 (02): : 152 - &
  • [34] CHEMICAL DYNAMICS OF SYMMETRIC AND ASYMMETRIC REACTION COORDINATES
    WOLFE, S
    SCHLEGEL, HB
    CSIZMADIA, IG
    BERNARDI, F
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1975, 97 (08) : 2020 - 2024
  • [35] BESSEL FUNCTIONS IN A QUANTUM-BILLIARD CONFIGURATION PROBLEM
    Elbert, Arpad
    Lorch, Lee
    Szego, Peter
    ANALYSIS AND APPLICATIONS, 2003, 1 (04) : 421 - 428
  • [36] Symmetric coordinates in solids: magnetic Bloch oscillations
    Zak, Joshua
    XXXTH INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS (ICGTMP) (GROUP30), 2015, 597
  • [37] The three -body problem as a geodesic billiard map with singularities
    Melendez, J.
    Alvarez-Ramirez, M.
    Garcia, A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 85
  • [38] Canonical Coordinates for the Planetary Problem
    Pinzari, Gabriella
    ACTA APPLICANDAE MATHEMATICAE, 2015, 137 (01) : 205 - 232
  • [39] STEFAN PROBLEM IN ELLIPSOIDAL COORDINATES
    Kharin, S. N.
    Kassabek, S. A.
    Salybek, D.
    Ashymov, T.
    NEWS OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN-SERIES PHYSICO-MATHEMATICAL, 2018, 5 (321): : 19 - 24
  • [40] A problem of elasticity in polar coordinates
    de Belaevsky, W
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1923, 177 : 253 - 254