Multi-Label Learning from Crowds

被引:34
|
作者
Li, Shao-Yuan [1 ]
Jiang, Yuan [1 ]
Chawla, Nitesh V. [2 ]
Zhou, Zhi-Hua [1 ]
机构
[1] Nanjing Univ, Natl Key Lab Novel Software Technol, Nanjing 210023, Jiangsu, Peoples R China
[2] Univ Notre Dame, Dept Comp Sci & Engn, Notre Dame, IN 46556 USA
基金
美国国家科学基金会;
关键词
Multi-label; crowdsourcing; label correlation; labeling cost; active selection; DESIGN; SYSTEM;
D O I
10.1109/TKDE.2018.2857766
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We consider multi-label crowdsourcing learning in two scenarios. In the first scenario, we aim at inferring instances' groundtruth given the crowds' annotations. We propose two approaches NAM/RAM (Neighborhood/Relevance Aware Multi-label crowdsourcing) modeling the crowds' expertise and label correlations from different perspectives. Extended from single-label crowdsourcing methods, NAM models the crowds' expertise on individual labels, but based on the idea that for rational workers, their annotations for instances similar in the feature space should also be similar, NAM utilizes information from the feature space and incorporates the local influence of neighborhoods' annotations. Noting that the crowds tend to act in an effort-saving manner while labeling multiple labels, i.e., rather than carefully annotating every proper label, they would prefer scanning and tagging a few most relevant labels, RAM models the crowds' expertise as their ability to distinguish the relevance between label pairs. In the second scenario, we care about cost-efficient crowdsourcing where the labeling and learning process are conducted in tandem. We extend NAM/RAM to the active paradigm and propose instance, label, and worker selection criteria such that the labeling cost is significantly saved compared to passive learning without labeling control. The proposals' effectiveness are validated on simulated and real data.
引用
收藏
页码:1369 / 1382
页数:14
相关论文
共 50 条
  • [21] Multi-Label Learning from Single Positive Labels
    Cole, Elijah
    Mac Aodha, Oisin
    Lorieul, Titouan
    Perona, Pietro
    Morris, Dan
    Jojic, Nebojsa
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 933 - 942
  • [22] Multi-Label Learning Based on Transfer Learning and Label Correlation
    Yang, Kehua
    She, Chaowei
    Zhang, Wei
    Yao, Jiqing
    Long, Shaosong
    CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 61 (01): : 155 - 169
  • [23] Multi-Directional Multi-Label Learning
    Wu, Danyang
    Pei, Shenfei
    Nie, Feiping
    Wang, Rong
    Li, Xuelong
    SIGNAL PROCESSING, 2021, 187
  • [24] Multi-instance multi-label learning
    Zhou, Zhi-Hua
    Zhang, Min-Ling
    Huang, Sheng-Jun
    Li, Yu-Feng
    ARTIFICIAL INTELLIGENCE, 2012, 176 (01) : 2291 - 2320
  • [25] Multi-label learning with multi-label smoothing regularization for vehicle re-identification
    Hou, Jinhui
    Zeng, Huanqiang
    Cai, Lei
    Zhu, Jianqing
    Chen, Jing
    Ma, Kai-Kuang
    NEUROCOMPUTING, 2019, 345 : 15 - 22
  • [26] Multi-Label Learning With Hidden Labels
    Huang, Jun
    Rui, Haowei
    Li, Guorong
    Qu, Xiwen
    Tao, Tao
    Zheng, Xiao
    IEEE ACCESS, 2020, 8 : 29667 - 29676
  • [27] A Unified Multi-label Relationship Learning
    Rastogi, Reshma
    Popli, Simran
    Moktan, Nima Dorji
    Sharma, Sweta
    14TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND EDUCATION (ICCSE 2019), 2019, : 686 - 691
  • [28] Multi-label Software Behavior Learning
    Feng, Yang
    Chen, Zhenyu
    2012 34TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE), 2012, : 1305 - 1308
  • [29] Robust Extreme Multi-label Learning
    Xu, Chang
    Tao, Dacheng
    Xu, Chao
    KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 1275 - 1284
  • [30] Multi-Label Learning for Activity Recognition
    Kumar, R.
    Qamar, I.
    Virdi, J. S.
    Krishnan, N. C.
    2015 INTERNATIONAL CONFERENCE ON INTELLIGENT ENVIRONMENTS IE 2015, 2015, : 152 - 155