HiPR: High-throughput probabilistic RNA structure inference

被引:0
|
作者
Kuksa, Pavel P. [1 ]
Li, Fan [4 ]
Kannan, Sampath [2 ]
Gregory, Brian D. [3 ]
Leung, Yuk Yee [1 ]
Wang, Li-San [1 ,2 ]
机构
[1] Univ Penn, Penn Neurodegenerat Genom Ctr, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA
[2] Univ Penn, Dept Comp & Informat Sci, Philadelphia, PA 19104 USA
[3] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA
[4] Childrens Hosp Los Angeles, Los Angeles, CA 90027 USA
关键词
High-throughput structure-sensitive sequencing; RNA structure inference; Probabilistic modeling; DMS-seq; DMS-MaPseq; SELECTIVE 2'-HYDROXYL ACYLATION; SECONDARY STRUCTURE PREDICTION; PRIMER EXTENSION; IN-VIVO; SHAPE-MAP; CONSTRAINTS; BINDING;
D O I
10.1016/j.csbj.2020.06.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent high-throughput structure-sensitive genome-wide sequencing-based assays have enabled large-scale studies of RNA structure, and robust transcriptome-wide computational prediction of individual RNA structures across RNA classes from these assays has potential to further improve the prediction accuracy. Here, we describe HiPR, a novel method for RNA structure prediction at single-nucleotide resolution that combines high-throughput structure probing data (DMS-seq, DMS-MaPseq) with a novel probabilistic folding algorithm. On validation data spanning a variety of RNA classes, HiPR often increases accuracy for predicting RNA structures, giving researchers new tools to study RNA structure. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology.
引用
收藏
页码:1539 / 1547
页数:9
相关论文
共 50 条
  • [21] Mod-seq: high-throughput sequencing for chemical probing of RNA structure
    Talkish, Jason
    May, Gemma
    Lin, Yizhu
    Woolford, John L., Jr.
    McManus, C. Joel
    RNA, 2014, 20 (05) : 713 - 720
  • [22] HIGH-THROUGHPUT SHAPE AND HYDROXYL RADICAL ANALYSIS OF RNA STRUCTURE AND RIBONUCLEOPROTEIN ASSEMBLY
    McGinnis, Jennifer L.
    Duncan, Caia D. S.
    Weeks, Kevin M.
    METHODS IN ENZYMOLOGY, VOL 468: BIOPHYSICAL, CHEMICAL, AND FUNCTIONAL PROBES OF RNA STRUCTURE, INTERACTIONS AND FOLDING, PT A, 2009, 468 : 67 - 89
  • [23] Mod-seq: A High-Throughput Method for Probing RNA Secondary Structure
    Lin, Yizhu
    May, Gemma E.
    McManus, C. Joel
    STRUCTURES OF LARGE RNA MOLECULES AND THEIR COMPLEXES, 2015, 558 : 125 - 152
  • [24] Linking RNA Sequence, Structure, and Function on Massively Parallel High-Throughput Sequencers
    Denny, Sarah K.
    Greenleaf, William J.
    COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2019, 11 (10):
  • [25] High-throughput cellular RNA device engineering
    Brent Townshend
    Andrew B Kennedy
    Joy S Xiang
    Christina D Smolke
    Nature Methods, 2015, 12 : 989 - 994
  • [26] High-throughput cellular RNA device engineering
    Townshend, Brent
    Kennedy, Andrew B.
    Xiang, Joy S.
    Smolke, Christina D.
    NATURE METHODS, 2015, 12 (10) : 989 - 994
  • [27] High-throughput isolation of Saccharomyces cerevisiae RNA
    Dye, BT
    Hao, LH
    Ahlquist, P
    BIOTECHNIQUES, 2005, 38 (06) : 868 - +
  • [28] High-Throughput Explorations of RNA Structural Modularity
    Boerneke, Mark A.
    Weeks, Kevin M.
    BIOCHEMISTRY, 2018, 57 (43) : 6129 - 6131
  • [29] High-throughput detection of RNA processing in bacteria
    Erin E. Gill
    Luisa S. Chan
    Geoffrey L. Winsor
    Neil Dobson
    Raymond Lo
    Shannan J. Ho Sui
    Bhavjinder K. Dhillon
    Patrick K. Taylor
    Raunak Shrestha
    Cory Spencer
    Robert E. W. Hancock
    Peter J. Unrau
    Fiona S. L. Brinkman
    BMC Genomics, 19
  • [30] High-throughput detection of RNA processing in bacteria
    Gill, Erin E.
    Chan, Luisa S.
    Winsor, Geoffrey L.
    Dobson, Neil
    Lo, Raymond
    Sui, Shannan J. Ho
    Dhillon, Bhavjinder K.
    Taylor, Patrick K.
    Shrestha, Raunak
    Spencer, Cory
    Hancock, Robert E. W.
    Unrau, Peter J.
    Brinkman, Fiona S. L.
    BMC GENOMICS, 2018, 19