Joint Estimation of Ice Sheet Vertical Velocity and Englacial Layer Geometry from Multipass Synthetic Aperture Radar Data

被引:0
|
作者
Ariho, Gordon [1 ]
Paden, John D. [1 ]
Hoffman, Andrew [2 ]
Christianson, Knut A. [3 ,4 ]
Holschuh, Nicholas
机构
[1] Univ Kansas, Ctr Remote Sensing & Integrated Syst CReSIS, Lawrence, KS 66045 USA
[2] Univ Washington, Dept Earth & Space Sci, Seattle, WA USA
[3] Univ Washington, Earth & Space Sci Program Climate Change, Seattle, WA USA
[4] Univ Washington, Quaternary Res Ctr, Seattle, WA USA
关键词
multipass; DInSAR; radar sounder; interferometry; tomography; radioglaciology; INTERFEROMETRY; PHASE; WIDE;
D O I
10.1109/PAST49659.2022.9974985
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Ice dynamics are a major factor in sea level rise and future sea-level rise projections [1]. The vertical velocity profile of the ice is one major knowledge gap in both observations and model experiments. We propose to apply multipass differential interferometric synthetic aperture radar (DInSAR) techniques to data from the Multichannel Coherent Radar Depth Sounder (MCoRDS) to measure the vertical displacement of englacial layers. Estimation of englacial layer vertical displacement requires compensating for the spatial baseline between interferometric antenna pairs using radar trajectory information and estimates of the cross-track layer slope from direction of arrival (DOA) analysis, but airborne systems suffer from unknown spatial baseline errors. The current DInSAR algorithm assumes zero error in the array position information when inferring displacement and the direction of arrival for subsurface scatterers, which means that unincorporated baseline errors map into errors in cross-track slope and vertical velocities. Here we demonstrate a maximum likelihood estimator that jointly estimates the vertical velocity, the cross-track internal layer slope, and the unknown baseline error due to GPS and Inertial Navigation System (INS) errors.
引用
收藏
页数:5
相关论文
共 33 条
  • [11] WINTER SEA-ICE MAPPING FROM MULTIPARAMETER SYNTHETIC-APERTURE RADAR DATA
    RIGNOT, E
    DRINKWATER, MR
    JOURNAL OF GLACIOLOGY, 1994, 40 (134) : 31 - 45
  • [12] Two-Dimensional Ship Velocity Estimation Based on KOMPSAT-5 Synthetic Aperture Radar Data
    Back, Minyoung
    Kim, Donghan
    Kim, Sang-Wan
    Won, Joong-Sun
    REMOTE SENSING, 2019, 11 (12)
  • [13] Refining Polarimetric Classification Methods for Deriving Sea Ice Labels from Synthetic Aperture Radar Data
    Reinisch, Elena C.
    Castro, Lauren
    APPLICATIONS OF MACHINE LEARNING 2022, 2022, 12227
  • [14] A DIGITAL TECHNIQUE TO ESTIMATE POLYNYA CHARACTERISTICS FROM SYNTHETIC APERTURE RADAR SEA-ICE DATA
    LYDEN, JD
    SHUCHMAN, RA
    JOURNAL OF GLACIOLOGY, 1987, 33 (114) : 243 - 245
  • [15] ESTIMATION OF OCEAN WAVE WAVENUMBER AND PROPAGATION DIRECTION FROM LIMITED SYNTHETIC APERTURE RADAR DATA
    CARLSON, GE
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1984, 22 (06): : 609 - 614
  • [16] Directional ocean wave spectrum estimation based on the joint measurement from synthetic aperture radar and wave spectrometer
    Ren, Lin
    Pan, Delu
    Hao, Zengzhou
    Mao, Zhihua
    He, Xianqiang
    REMOTE SENSING OF THE OCEAN, SEA ICE, COASTAL WATERS, AND LARGE WATER REGIONS 2011, 2011, 8175
  • [17] SEA ICE CONCENTRATION ESTIMATION FROM SENTINEL-1 SYNTHETIC APERTURE RADAR IMAGES OVER THE FRAM STRAIT
    Aldenhoff, Wiebke
    Berg, Anders
    Eriksson, Leif E. B.
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 7675 - 7677
  • [18] Focused Synthetic Aperture Radar Processing of Ice-Sounding Data Collected Over the East Antarctic Ice Sheet via the Modified Range Migration Algorithm Using Curvelets
    Lang, Shinan
    Liu, Xiaojun
    Zhao, Bo
    Chen, Xiuwei
    Fang, Guangyou
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (08): : 4496 - 4509
  • [19] Aboveground biomass estimation of tropical forest from Envisat advanced synthetic aperture radar data using modeling approach
    Kumar, Shashi
    Pandey, Uttara
    Kushwaha, Satya P.
    Chatterjee, Rajat S.
    Bijker, Wietske
    Journal of Applied Remote Sensing, 2012, 6 (01):
  • [20] Aboveground biomass estimation of tropical forest from Envisat advanced synthetic aperture radar data using modeling approach
    Kumar, Shashi
    Pandey, Uttara
    Kushwaha, Satya P.
    Chatterjee, Rajat S.
    Bijker, Wietske
    JOURNAL OF APPLIED REMOTE SENSING, 2012, 6