Joint Estimation of Ice Sheet Vertical Velocity and Englacial Layer Geometry from Multipass Synthetic Aperture Radar Data

被引:0
|
作者
Ariho, Gordon [1 ]
Paden, John D. [1 ]
Hoffman, Andrew [2 ]
Christianson, Knut A. [3 ,4 ]
Holschuh, Nicholas
机构
[1] Univ Kansas, Ctr Remote Sensing & Integrated Syst CReSIS, Lawrence, KS 66045 USA
[2] Univ Washington, Dept Earth & Space Sci, Seattle, WA USA
[3] Univ Washington, Earth & Space Sci Program Climate Change, Seattle, WA USA
[4] Univ Washington, Quaternary Res Ctr, Seattle, WA USA
关键词
multipass; DInSAR; radar sounder; interferometry; tomography; radioglaciology; INTERFEROMETRY; PHASE; WIDE;
D O I
10.1109/PAST49659.2022.9974985
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Ice dynamics are a major factor in sea level rise and future sea-level rise projections [1]. The vertical velocity profile of the ice is one major knowledge gap in both observations and model experiments. We propose to apply multipass differential interferometric synthetic aperture radar (DInSAR) techniques to data from the Multichannel Coherent Radar Depth Sounder (MCoRDS) to measure the vertical displacement of englacial layers. Estimation of englacial layer vertical displacement requires compensating for the spatial baseline between interferometric antenna pairs using radar trajectory information and estimates of the cross-track layer slope from direction of arrival (DOA) analysis, but airborne systems suffer from unknown spatial baseline errors. The current DInSAR algorithm assumes zero error in the array position information when inferring displacement and the direction of arrival for subsurface scatterers, which means that unincorporated baseline errors map into errors in cross-track slope and vertical velocities. Here we demonstrate a maximum likelihood estimator that jointly estimates the vertical velocity, the cross-track internal layer slope, and the unknown baseline error due to GPS and Inertial Navigation System (INS) errors.
引用
收藏
页数:5
相关论文
共 33 条
  • [1] A comparison of automated approaches to extracting englacial-layer geometry from radar data across ice sheets
    Delf, Richard
    Schroeder, Dustin M.
    Curtis, Andrew
    Giannopoulos, Antonios
    Bingham, Robert G.
    ANNALS OF GLACIOLOGY, 2020, 61 (81) : 234 - 241
  • [2] An ice-sheet-wide framework for englacial attenuation from ice-penetrating radar data
    Jordan, T. M.
    Bamber, J. L.
    Williams, C. N.
    Paden, J. D.
    Siegert, M. J.
    Huybrechts, P.
    Gagliardini, O.
    Gillet-Chaulet, F.
    CRYOSPHERE, 2016, 10 (04): : 1547 - 1570
  • [3] Focused synthetic aperture radar processing of ice-sounder data collected over the Greenland ice sheet
    Legarsky, JL
    Gogineni, SP
    Akins, TL
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (10): : 2109 - 2117
  • [4] ANALYSIS OF SYNTHETIC APERTURE RADAR DATA COLLECTED OVER THE SOUTHWESTERN GREENLAND ICE-SHEET
    JEZEK, KC
    DRINKWATER, MR
    CRAWFORD, JP
    BINDSCHADLER, R
    KWOK, R
    JOURNAL OF GLACIOLOGY, 1993, 39 (131) : 119 - 132
  • [5] Ice velocity measurements of Langjokull, Iceland, from interferometric synthetic aperture radar (InSAR)
    Palmer, Steven
    Shepherd, Andrew
    Bjornsson, Heigi
    Palsson, Finnur
    JOURNAL OF GLACIOLOGY, 2009, 55 (193) : 834 - 838
  • [6] Glaciological properties of the Antarctic ice sheet from RADARSAT-1 synthetic aperture radar imagery
    Jezek, KC
    ANNALS OF GLACIOLOGY, VOL 29, 1999, 1999, 29 : 286 - 290
  • [7] Simulation of sea surface current velocity from synthetic aperture radar (SAR) data
    Marghany, Maged
    Hashim, Mazlan
    INTERNATIONAL JOURNAL OF THE PHYSICAL SCIENCES, 2010, 5 (12): : 1915 - 1925
  • [8] Detection and Velocity Estimation of Moving Vehicles in High-Resolution Spaceborne Synthetic Aperture Radar Data
    Hinz, Stefan
    Weihing, Diana
    Suchandt, Steffen
    Bamler, Richard
    2008 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, VOLS 1-3, 2008, : 794 - 799
  • [9] Retrieval of ice/water observations from synthetic aperture radar imagery for use in lake ice data assimilation
    Scott, K. Andrea
    Xu, Linlin
    Pour, Homa Kheyrollah
    JOURNAL OF GREAT LAKES RESEARCH, 2020, 46 (06) : 1521 - 1532
  • [10] Arctic sea ice cover data from spaceborne synthetic aperture radar by deep learning
    Wang, Yi-Ran
    Li, Xiao-Ming
    EARTH SYSTEM SCIENCE DATA, 2021, 13 (06) : 2723 - 2742