Effect of operating parameters on a hybrid system of intermediate-temperature solid oxide fuel cell and gas turbine

被引:32
|
作者
Lv, Xiaojing [1 ]
Lu, Chaohao [1 ]
Wang, Yuzhang [1 ]
Weng, Yiwu [1 ]
机构
[1] Shanghai Jiao Tong Univ, Minist Educ, Key Lab Power Machinery & Engn, Sch Mech Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Intermediate temperature solid oxide fuel cell; Gas turbine; Hybrid system; Gasified biomass gas; Operating parameter; PART-LOAD OPERATION; BIOMASS GASIFICATION; PERFORMANCE ANALYSIS; POWER-GENERATION; SOFC; CYCLE; ANODE; OPTIMIZATION; INTEGRATION; REACTOR;
D O I
10.1016/j.energy.2015.07.100
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this work, detailed mathematical models of a hybrid system of an IT-SOFC (intermediate-temperature solid oxide fuel cell) and a GT (gas turbine) that is fueled by gasified biomass gas are built. Under the constraints of the working temperature of the fuel cell, mean axial temperature gradient, compressor surge, and turbine inlet temperature, the effects of operating parameters on the hybrid system are investigated mainly including RS (rotational speed), F/A (fuel/air) ratio, and S/C (steam/carbon) ratio. The electrical efficiency is 59.24% under the design condition. The power and efficiency of the system both decrease as the RS increases, with the latter decreasing from 60.95% to 49.08%. If the RS is too low, the system operation goes beyond the safety zone. In this situation, both the fuel cell and the turbine may be subjected to excess temperatures, and the compressor may easily surge. The efficiency increases from 56.5% to 61.34% with increasing F/A ratio, but an extremely high F/A ratio can cause the turbine to suffer from excess temperature. The efficiency decreases from 61.12% to 56.8% with increasing S/C ratio. The following two conclusions are drawn. First, the F/A ratio has the greatest influence on the performance of the hybrid system, i.e., its adjustment can effectively change the load in a wide range. Second, the RS and S/C ratio are suitable for load adjustment in a narrow range. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:10 / 19
页数:10
相关论文
共 50 条
  • [21] Promising alloys for intermediate-temperature solid oxide fuel cell interconnect application
    Geng, Shujiang
    Zhu, Jiahong
    JOURNAL OF POWER SOURCES, 2006, 160 (02) : 1009 - 1016
  • [22] Electrospun composite nanofibers for intermediate-temperature solid oxide fuel cell electrodes
    Ahn, Minwoo
    Han, Seungwoo
    Lee, Jongseo
    Lee, Wonyoung
    CERAMICS INTERNATIONAL, 2020, 46 (05) : 6006 - 6011
  • [23] Effect of operating parameters on performance of an integrated biomass gasifier, solid oxide fuel cells and micro gas turbine system
    Jia, Junxi
    Abudula, Abuliti
    Wei, Liming
    Sun, Baozhi
    Shi, Yue
    BIOMASS & BIOENERGY, 2015, 75 : 35 - 45
  • [24] Electrolyte materials for intermediate-temperature solid oxide fuel cells
    Shi, Huangang
    Su, Chao
    Ran, Ran
    Cao, Jiafeng
    Shao, Zongping
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2020, 30 (06) : 764 - 774
  • [25] Materials for Intermediate-Temperature Solid-Oxide Fuel Cells
    Kilner, John A.
    Burriel, Monica
    ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 44, 2014, 44 : 365 - 393
  • [26] Performance study and control strategies of temperature solid oxide fuel cell-gas turbine hybrid system
    Li, Yang
    Weng, Yiwu
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2010, 30 (35): : 94 - 100
  • [27] Electrolyte materials for intermediate-temperature solid oxide fuel cells
    Huangang Shi
    Chao Su
    Ran Ran
    Jiafeng Cao
    Zongping Shao
    Progress in Natural Science:Materials International, 2020, 30 (06) : 764 - 774
  • [28] Control design for a bottoming solid oxide fuel cell gas turbine hybrid system
    Mueller, Fabian
    Jabbari, Faryar
    Brouwer, Jacob
    Roberts, Rory
    Junker, Tobias
    Ghezel-Ayagh, Hossein
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY, PTS A AND B, 2006, : 629 - 640
  • [29] Dynamic modeling of a hybrid system of the solid oxide fuel cell and recuperative gas turbine
    Zhang, Xiongwen
    Li, Jun
    Li, Guojun
    Feng, Zhenping
    JOURNAL OF POWER SOURCES, 2006, 163 (01) : 523 - 531
  • [30] Economic plantwide control of a hybrid solid oxide fuel cell - gas turbine system
    Dehghan, Ali Reza
    Fanaei, Mohammad Ali
    Panahi, Mehdi
    APPLIED ENERGY, 2022, 328