Effect of operating parameters on a hybrid system of intermediate-temperature solid oxide fuel cell and gas turbine

被引:32
|
作者
Lv, Xiaojing [1 ]
Lu, Chaohao [1 ]
Wang, Yuzhang [1 ]
Weng, Yiwu [1 ]
机构
[1] Shanghai Jiao Tong Univ, Minist Educ, Key Lab Power Machinery & Engn, Sch Mech Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
Intermediate temperature solid oxide fuel cell; Gas turbine; Hybrid system; Gasified biomass gas; Operating parameter; PART-LOAD OPERATION; BIOMASS GASIFICATION; PERFORMANCE ANALYSIS; POWER-GENERATION; SOFC; CYCLE; ANODE; OPTIMIZATION; INTEGRATION; REACTOR;
D O I
10.1016/j.energy.2015.07.100
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this work, detailed mathematical models of a hybrid system of an IT-SOFC (intermediate-temperature solid oxide fuel cell) and a GT (gas turbine) that is fueled by gasified biomass gas are built. Under the constraints of the working temperature of the fuel cell, mean axial temperature gradient, compressor surge, and turbine inlet temperature, the effects of operating parameters on the hybrid system are investigated mainly including RS (rotational speed), F/A (fuel/air) ratio, and S/C (steam/carbon) ratio. The electrical efficiency is 59.24% under the design condition. The power and efficiency of the system both decrease as the RS increases, with the latter decreasing from 60.95% to 49.08%. If the RS is too low, the system operation goes beyond the safety zone. In this situation, both the fuel cell and the turbine may be subjected to excess temperatures, and the compressor may easily surge. The efficiency increases from 56.5% to 61.34% with increasing F/A ratio, but an extremely high F/A ratio can cause the turbine to suffer from excess temperature. The efficiency decreases from 61.12% to 56.8% with increasing S/C ratio. The following two conclusions are drawn. First, the F/A ratio has the greatest influence on the performance of the hybrid system, i.e., its adjustment can effectively change the load in a wide range. Second, the RS and S/C ratio are suitable for load adjustment in a narrow range. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:10 / 19
页数:10
相关论文
共 50 条
  • [1] Effect of gasified biomass fuel on load characteristics of an intermediate-temperature solid oxide fuel cell and gas turbine hybrid system
    Lv, Xiaojing
    Gu, Chenghong
    Liu, Xing
    Weng, Yiwu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (22) : 9563 - 9576
  • [2] Determination of safe operation zone for an intermediate-temperature solid oxide fuel cell and gas turbine hybrid system
    Lv, Xiaojing
    Liu, Xing
    Gu, Chenghong
    Weng, Yiwu
    ENERGY, 2016, 99 : 91 - 102
  • [3] Effect of fuel cell operating parameters on the performance of a multi-MW solid oxide fuel cell/gas turbine hybrid system
    Karvountzi, Georgia C.
    Ferrall, Joe
    Powers, James D.
    PROCEEDINGS OF THE ASME TURBO EXPO, VOL 3, 2007, : 271 - 280
  • [4] Coupling effect of operating parameters on performance of a biogas-fueled solid oxide fuel cell/gas turbine hybrid system
    Ding, Xiaoyi
    Lv, Xiaojing
    Weng, Yiwu
    APPLIED ENERGY, 2019, 254
  • [5] Performance Study on Intermediate Temperature Solid Oxide Fuel Cell and Gas Turbine Hybrid System Fueled with Biomass Gas
    Ding, Xiaoyi
    Lv, Xiaojing
    Weng, Yiwu
    PROCEEDINGS OF THE ASME POWER CONFERENCE JOINT WITH ICOPE-17, 2017, VOL 2, 2017,
  • [6] Performance evaluation of intermediate temperature solid oxide fuel cell-gas turbine hybrid power system
    Bavirisetti, Sushanth
    Sahu, Mithilesh Kumar
    WORLD JOURNAL OF ENGINEERING, 2023, 20 (01) : 186 - 195
  • [7] Coke formation and performance of an intermediate-temperature solid oxide fuel cell operating on dimethyl ether fuel
    Su, Chao
    Ran, Ran
    Wang, Wei
    Shao, Zongping
    JOURNAL OF POWER SOURCES, 2011, 196 (04) : 1967 - 1974
  • [8] Exergy Analysis of an Intermediate Temperature Solid Oxide Fuel Cell-Gas Turbine Hybrid System Fed with Ethanol
    Stamatis, Anastassios
    Vinni, Christina
    Bakalis, Diamantis
    Tzorbatzoglou, Fotini
    Tsiakaras, Panagiotis
    ENERGIES, 2012, 5 (11) : 4268 - 4287
  • [9] Effects of operating and design parameters on the performance of a solid oxide fuel cell-gas turbine system
    Suther, T.
    Fung, A. S.
    Koksal, M.
    Zabihian, F.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2011, 35 (07) : 616 - 632
  • [10] OPTIMIZATION OF A SOLID OXIDE FUEL CELL AND GAS TURBINE HYBRID SYSTEM
    Kanarit, Setthawut
    Karunkeyoon, Wirinya
    Ai-Alili, Ali
    Eveloy, Valerie
    Rodgers, Peter
    PROCEEDINGS OF THE ASME 13TH FUEL CELL SCIENCE, ENGINEERING, AND TECHNOLOGY CONFERENCE, 2015, 2016,