Deep Learning in Ischemic Stroke Imaging Analysis: A Comprehensive Review

被引:18
|
作者
Cui, Liyuan [1 ]
Fan, Zhiyuan [2 ]
Yang, Yingjian [3 ]
Liu, Rui [1 ]
Wang, Dajiang [1 ]
Feng, Yingying [3 ]
Lu, Jiahui [1 ]
Fan, Yifeng [1 ]
机构
[1] Hangzhou Med Coll, Sch Med Imaging, Hangzhou, Zhejiang, Peoples R China
[2] Zhejiang Univ, Ctr Intelligent Med Technol & Equipment, Binjiang Inst, Hangzhou, Zhejiang, Peoples R China
[3] Northeastern Univ, Sch Med & Biol Informat Engn, Shenyang, Peoples R China
关键词
HEALTH-CARE PROFESSIONALS; LARGE-VESSEL OCCLUSIONS; COMPUTED-TOMOGRAPHY; ARTIFICIAL-INTELLIGENCE; LESION SEGMENTATION; EARLY MANAGEMENT; 2018; GUIDELINES; DIFFUSION; PERFUSION; SCORE;
D O I
10.1155/2022/2456550
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Ischemic stroke is a cerebrovascular disease with a high morbidity and mortality rate, which poses a serious challenge to human health and life. Meanwhile, the management of ischemic stroke remains highly dependent on manual visual analysis of noncontrast computed tomography (CT) or magnetic resonance imaging (MRI). However, artifacts and noise of the equipment as well as the radiologist experience play a significant role on diagnostic accuracy. To overcome these defects, the number of computer-aided diagnostic (CAD) methods for ischemic stroke is increasing substantially during the past decade. Particularly, deep learning models with massive data learning capabilities are recognized as powerful auxiliary tools for the acute intervention and guiding prognosis of ischemic stroke. To select appropriate interventions, facilitate clinical practice, and improve the clinical outcomes of patients, this review firstly surveys the current state-of-the-art deep learning technology. Then, we summarized the major applications in acute ischemic stroke imaging, particularly in exploring the potential function of stroke diagnosis and multimodal prognostication. Finally, we sketched out the current problems and prospects.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Exploring the Insomnia-Ischemic Stroke Nexus: A Comprehensive Review
    Matas, Andreia
    Pinto, Nuno
    Conde, Bebiana
    Patto, Maria Vaz
    JOURNAL OF CLINICAL MEDICINE, 2024, 13 (06)
  • [32] A comprehensive review for artificial intelligence on neuroimaging in rehabilitation of ischemic stroke
    Zhao, Zijian
    Zhang, Yuanyuan
    Su, Jiuhui
    Yang, Lianbo
    Pang, Luhang
    Gao, Yingshan
    Wang, Hongbo
    FRONTIERS IN NEUROLOGY, 2024, 15
  • [33] Molecular imaging analysis in cancer using deep learning: a review
    Prusty S.
    Dora L.
    Panda R.
    Agrawal S.
    Abraham A.
    Research on Biomedical Engineering, 2023, 39 (04) : 1015 - 1032
  • [34] Semantic speech analysis using machine learning and deep learning techniques: a comprehensive review
    Tyagi, Suryakant
    Szenasi, Sandor
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (29) : 73427 - 73456
  • [35] Advancements in cardiac structures segmentation: a comprehensive systematic review of deep learning in CT imaging
    Alnasser, Turki Nasser
    Abdulaal, Lojain
    Maiter, Ahmed
    Sharkey, Michael
    Dwivedi, Krit
    Salehi, Mahan
    Garg, Pankaj
    Swift, Andrew James
    Alabed, Samer
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2024, 11
  • [36] Functional Outcome Prediction in Acute Ischemic Stroke Using a Fused Imaging and Clinical Deep Learning Model
    Liu, Yongkai
    Yu, Yannan
    Ouyang, Jiahong
    Jiang, Bin
    Yang, Guang
    Ostmeier, Sophie
    Wintermark, Max
    Michel, Patrik
    Liebeskind, David S.
    Lansberg, Maarten G.
    Albers, Gregory W.
    Zaharchuk, Greg
    STROKE, 2023, 54 (09) : 2316 - 2327
  • [37] Use of Deep Learning to Predict Final Ischemic Stroke Lesions From Initial Magnetic Resonance Imaging
    Yu, Yannan
    Xie, Yuan
    Thamm, Thoralf
    Gong, Enhao
    Ouyang, Jiahong
    Huang, Charles
    Christensen, Soren
    Marks, Michael P.
    Lansberg, Maarten G.
    Albers, Gregory W.
    Zaharchuk, Greg
    JAMA NETWORK OPEN, 2020, 3 (03)
  • [38] Fire Detection with Deep Learning: A Comprehensive Review
    Vasconcelos, Rodrigo N.
    Rocha, Washington J. S. Franca
    Costa, Diego P.
    Duverger, Soltan G.
    Santana, Mariana M. M. de
    Cambui, Elaine C. B.
    Ferreira-Ferreira, Jefferson
    Oliveira, Mariana
    Barbosa, Leonardo da Silva
    Cordeiro, Carlos Leandro
    LAND, 2024, 13 (10)
  • [39] A comprehensive review of deep learning in colon cancer
    Pacal, Ishak
    Karaboga, Dervis
    Basturk, Alper
    Akay, Bahriye
    Nalbantoglu, Ufuk
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 126
  • [40] A comprehensive review of image denoising in deep learning
    Jebur, Rusul Sabah
    Zabil, Mohd Hazli Bin Mohamed
    Hammood, Dalal Adulmohsin
    Cheng, Lim Kok
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (20) : 58181 - 58199