Non-Poisson statistics of settling spheres

被引:13
|
作者
Bergougnoux, Laurence [1 ]
Guazzelli, Elisabeth [1 ]
机构
[1] Aix Marseille Univ U1, CNRS, IUSTI, UMR 6595, F-13453 Marseille 13, France
关键词
mixing; sedimentation; suspensions; SEDIMENTATION; FLUCTUATIONS; SUSPENSIONS;
D O I
10.1063/1.3231828
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Direct tracking of the particle positions in a sedimenting suspension indicates that the particles are not simply randomly distributed. The initial mixing of the suspension leads to a microstructure which consists of regions devoid of particles surrounded by regions where particles have an excess of close neighbors and which is maintained during sedimentation.
引用
收藏
页数:4
相关论文
共 50 条
  • [11] Calculation of packet jitter for non-poisson traffic
    H. Dbira
    A. Girard
    B. Sansò
    Annals of Telecommunications, 2016, 71 : 223 - 237
  • [12] Bankruptcy probabilities under non-poisson inspection
    Kuipers, Florine
    Mandjes, Michel
    Morcy, Sara
    ADVANCES IN APPLIED PROBABILITY, 2025,
  • [13] Non-Poisson probabilistic seismic hazard assessment
    Nadia Tahernia
    Morteza Khodabin
    Noorbakhsh Mirzaei
    Arabian Journal of Geosciences, 2014, 7 : 3259 - 3269
  • [14] Consideration of non-Poisson distributions for lidar applications
    Gerrard, AJ
    Kane, TJ
    Thayer, JP
    Ruf, CS
    Collins, RL
    APPLIED OPTICS, 2001, 40 (09) : 1488 - 1492
  • [15] Consideration of non-Poisson distributions for lidar applications
    Gerrard, Andrew J.
    Kane, Timothy J.
    Thayer, Jeffrey P.
    Ruf, Christopher S.
    Collins, Richard L.
    Applied Optics, 2001, 40 (09): : 1488 - 1492
  • [16] STATISTICS FOR POISSON MODELS OF OVERLAPPING SPHERES
    Hug, Daniel
    Last, Guenter
    Pawlas, Zbynek
    Weil, Wolfgang
    ADVANCES IN APPLIED PROBABILITY, 2014, 46 (04) : 937 - 962
  • [17] NON-POISSON DONATION BEHAVIORS IN VIRTUAL WORLDS
    Yang, Yan-Hong
    Li, Ming-Xia
    Zhou, Wei-Xing
    Stanley, H. Eugene
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (04)
  • [18] Non-Poisson particle systems and Boltzmann equations
    Nekrutkin, V
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2000, 85 (1-2) : 183 - 197
  • [19] Brain, music, and non-Poisson renewal processes
    Bianco, Simone
    Ignaccolo, Massimiliano
    Rider, Mark S.
    Ross, Mary J.
    Winsor, Phil
    Grigolini, Paolo
    PHYSICAL REVIEW E, 2007, 75 (06)
  • [20] Queues With the Dropping Function and Non-Poisson Arrivals
    Chydzinski, Andrzej
    IEEE ACCESS, 2020, 8 (08): : 39819 - 39829