Permutations avoiding certain patterns: The case of length 4 and some generalizations

被引:32
|
作者
Bona, M [1 ]
机构
[1] MIT,DEPT MATH,CAMBRIDGE,MA 02139
关键词
D O I
10.1016/S0012-365X(96)00140-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Proving and disproving some earlier conjectures, we give a characterization of the numbers of permutations avoiding each pattern of length 4. Some implications for longer patterns are included.
引用
收藏
页码:55 / 67
页数:13
相关论文
共 50 条
  • [11] Refined Restricted Permutations Avoiding Subsets of Patterns of Length Three
    Toufik Mansour
    Aaron Robertson
    Annals of Combinatorics, 2002, 6 (3) : 407 - 418
  • [12] Permutations of a multiset avoiding permutations of length 3
    Albert, MH
    Aldred, REL
    Atkinson, MD
    Handley, C
    Holton, D
    EUROPEAN JOURNAL OF COMBINATORICS, 2001, 22 (08) : 1021 - 1031
  • [13] Enumeration of Dumont permutations avoiding certain four-letter patterns
    Burstein, Alexander
    Jones, Opel
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2021, 22 (02):
  • [14] Finite transition matrices for permutations avoiding pairs of length four patterns
    Kremer, D
    Shiu, WC
    DISCRETE MATHEMATICS, 2003, 268 (1-3) : 171 - 183
  • [15] On consecutive pattern avoiding permutations of length 4, 5 and beyond
    Beaton, Nicholas R.
    Conway, Andrew R.
    Guttmannl, Nthony J.
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2018, 20 (01):
  • [16] On consecutive pattern avoiding permutations of length 4, 5 and beyond
    Beaton, Nicholas R.
    Conway, Andrew R.
    Guttmann, Anthony J.
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2018, 19 (02):
  • [17] Avoiding patterns in irreducible permutations
    Baril, Jean-Luc
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2016, 17 (03): : 13 - 30
  • [18] Avoiding consecutive patterns in permutations
    Aldred, R. E. L.
    Atkinson, M. D.
    McCaughan, D. J.
    ADVANCES IN APPLIED MATHEMATICS, 2010, 45 (03) : 449 - 461
  • [19] Joint distributions of statistics over permutations avoiding two patterns of length 3
    Han, Tian
    Kitaev, Sergey
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2024, 26 (01):
  • [20] Clustering of consecutive numbers in permutations avoiding a pattern of length three or avoiding a finite number of simple patterns
    Pinsky, Ross G.
    DISCRETE MATHEMATICS, 2024, 347 (12)