Uncertainty estimation and visualization in probabilistic segmentation

被引:12
|
作者
Al-Taie, Ahmed [1 ,3 ]
Hahn, Horst K. [1 ,2 ]
Linsen, Lars [1 ]
机构
[1] Jacobs Univ Bremen, D-28759 Bremen, Germany
[2] Fraunhofer MEVIS, Bremen, Germany
[3] Univ Baghdad, Coll Sci Women, Dept Comp Sci, Baghdad, Iraq
来源
COMPUTERS & GRAPHICS-UK | 2014年 / 39卷
关键词
Uncertainty estimation; Uncertainty visualization; Probabilistic segmentation; C-MEANS ALGORITHM; INFORMATION;
D O I
10.1016/j.cag.2013.10.012
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Probabilistic segmentation is concerned with handling imperfections of image segmentation algorithms. They assign to each voxel and each segment a probability that the voxel belongs to the segment. This is often the starting point for estimating and visualizing uncertainties in the segmentation result. We propose a novel, generally applicable uncertainty estimation approach that considers all probabilities to compute a single uncertainty value between 0 and 1 for each voxel. It is based on aspects of information theory and uses the Kullback-Leibler divergence (or the total variation divergence). We developed several forms of the proposed approach and analyze and compare their behaviors. We show the advantage over existing approaches, derive aggregated uncertainty measures that are useful for judging the accuracy of a probabilistic segmentation algorithm, and present visualization methods to highlight uncertainties in segmentation results. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:48 / 59
页数:12
相关论文
共 50 条
  • [41] Probabilistic framework for the estimation of the adult and child toxicokinetic intraspecies uncertainty factors
    Pelekis, M
    Nicolich, MJ
    Gauthier, JS
    RISK ANALYSIS, 2003, 23 (06) : 1239 - 1255
  • [42] Probabilistic 4D blood flow tracking and uncertainty estimation
    Friman, Ola
    Hennemuth, Anja
    Harloff, Andreas
    Bock, Jelena
    Markl, Michael
    Peitgen, Heinz-Otto
    MEDICAL IMAGE ANALYSIS, 2011, 15 (05) : 720 - 728
  • [43] The Probabilistic Data Association Filter ESTIMATION IN THE PRESENCE OF MEASUREMENT ORIGIN UNCERTAINTY
    Bar-Shalom, Yaakov
    Daum, Fred
    Huang, Jim
    IEEE CONTROL SYSTEMS MAGAZINE, 2009, 29 (06): : 82 - 100
  • [44] Road Friction Coefficient Estimation Via Weakly Supervised Semantic Segmentation and Uncertainty Estimation
    Liu, Feilin
    Wu, Yan
    Mo, Yujian
    Liao, Yujun
    He, Yufei
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2022, 36 (14)
  • [45] Can uncertainty estimation predict segmentation performance in ultrasound bone imaging?
    Pandey, Prashant U.
    Guy, Pierre
    Hodgson, Antony J.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2022, 17 (05) : 825 - 832
  • [46] Hematoma Expansion Context Guided Intracranial Hemorrhage Segmentation and Uncertainty Estimation
    Li, Xiangyu
    Luo, Gongning
    Wang, Wei
    Wang, Kuanquan
    Gao, Yue
    Li, Shuo
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (03) : 1140 - 1151
  • [47] Estimation of Inferential Uncertainty in Assessing Expert Segmentation Performance from STAPLE
    Commowick, Olivier
    Warfield, Simon K.
    INFORMATION PROCESSING IN MEDICAL IMAGING, PROCEEDINGS, 2009, 5636 : 701 - 712
  • [48] Confidence Calibration and Predictive Uncertainty Estimation for Deep Medical Image Segmentation
    Mehrtash, Alireza
    Wells, William M., III
    Tempany, Clare M.
    Abolmaesumi, Purang
    Kapur, Tina
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (12) : 3868 - 3878
  • [49] Leveraging Uncertainty Estimation for Segmentation of Kidney, Kidney Tumor and Kidney Cysts
    Salahuddin, Zohaib
    Kuang, Sheng
    Lambin, Philippe
    Woodruff, Henry C.
    KIDNEY AND KIDNEY TUMOR SEGMENTATION, KITS 2023, 2024, 14540 : 40 - 46
  • [50] Transductive Image Segmentation: Self-training and Effect of Uncertainty Estimation
    Kamnitsas, Konstantinos
    Winzeck, Stefan
    Kornaropoulos, Evgenios N.
    Whitehouse, Daniel
    Englman, Cameron
    Phyu, Poe
    Pao, Norman
    Menon, David K.
    Rueckert, Daniel
    Das, Tilak
    Newcombe, Virginia F. J.
    Glocker, Ben
    DOMAIN ADAPTATION AND REPRESENTATION TRANSFER, AND AFFORDABLE HEALTHCARE AND AI FOR RESOURCE DIVERSE GLOBAL HEALTH (DART 2021), 2021, 12968 : 79 - 89