Some inequalities about connected domination number

被引:16
|
作者
Bo, C [1 ]
Liu, BL [1 ]
机构
[1] S CHINA NORMAL UNIV,DEPT MATH,GUANGZHOU 510361,PEOPLES R CHINA
关键词
D O I
10.1016/0012-365X(95)00088-E
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V,E) be a graph. In this note, gamma(c),ir,gamma,i,beta(0),Gamma,IR denote the connected domination number, the irredundance number, the domination number, the independent domination number, the independence number, the upper domination number and the upper irredundance number, respectively. We prove that gamma(c) less than or equal to 3 ir - 2 for a connected graph G. Thus, an open problem in Hedetniemi and Laskar (1984) discuss further some relations between gamma(c) and gamma,beta(0),Gamma,IR, respectively.
引用
收藏
页码:241 / 245
页数:5
相关论文
共 50 条
  • [21] Some variants of perfect graphs related to the matching number, the vertex cover and the weakly connected domination number
    Bermudo, Sergio
    Dettlaff, Magda
    Lemanska, Magdalena
    DISCRETE APPLIED MATHEMATICS, 2021, 304 : 153 - 163
  • [22] Some variants of perfect graphs related to the matching number, the vertex cover and the weakly connected domination number
    Bermudo, Sergio
    Dettlaff, Magda
    Lemańska, Magdalena
    Discrete Applied Mathematics, 2021, 304 : 153 - 163
  • [23] A note on weakly connected domination number in graphs
    Chen, Xue-gang
    Shiu, Wai Chee
    ARS COMBINATORIA, 2010, 97 : 193 - 201
  • [24] Connected Domination Number of a Graph and its Complement
    H. Karami
    S. M. Sheikholeslami
    Abdollah Khodkar
    Douglas B. West
    Graphs and Combinatorics, 2012, 28 : 123 - 131
  • [25] On Some Graphs Whose Domination Number Is the Perfect Italian Domination Number
    Poovathingal, Agnes
    Kureethara, Joseph Varghese
    FOURTH CONGRESS ON INTELLIGENT SYSTEMS, VOL 2, CIS 2023, 2024, 869 : 191 - 200
  • [26] Connected power domination number of product graphs
    Ganesamurthy, S.
    Srimathi, R.
    Jeyaranjani, J.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024,
  • [27] The connected monophonic eccentric domination number of a graph
    Titus, P.
    Fancy, J. Ajitha
    Joshi, Gyanendra Prasad
    Amutha, S.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (05) : 6451 - 6460
  • [28] On the number of edges in graphs with a given weakly connected domination number
    Sanchis, LA
    DISCRETE MATHEMATICS, 2002, 257 (01) : 111 - 124
  • [29] The E-mail gossip number and the connected domination number
    Department of Computer Sciences, New Mexico State University, Las Cruces, NM 88003, United States
    不详
    Appl Math Lett, 4 (15-17):
  • [30] Connected Domination Number of a Graph and its Complement
    Karami, H.
    Sheikholeslami, S. M.
    Khodkar, Abdollah
    West, Douglas B.
    GRAPHS AND COMBINATORICS, 2012, 28 (01) : 123 - 131