Some inequalities about connected domination number

被引:16
|
作者
Bo, C [1 ]
Liu, BL [1 ]
机构
[1] S CHINA NORMAL UNIV,DEPT MATH,GUANGZHOU 510361,PEOPLES R CHINA
关键词
D O I
10.1016/0012-365X(95)00088-E
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V,E) be a graph. In this note, gamma(c),ir,gamma,i,beta(0),Gamma,IR denote the connected domination number, the irredundance number, the domination number, the independent domination number, the independence number, the upper domination number and the upper irredundance number, respectively. We prove that gamma(c) less than or equal to 3 ir - 2 for a connected graph G. Thus, an open problem in Hedetniemi and Laskar (1984) discuss further some relations between gamma(c) and gamma,beta(0),Gamma,IR, respectively.
引用
收藏
页码:241 / 245
页数:5
相关论文
共 50 条
  • [1] Some inequalities about connected domination number
    Department of Mathematics, South China Normal University, Guangzhou 510631, China
    Discrete Math, 1-3 (241-245):
  • [2] The Connected Hub Number and the Connected Domination Number
    Johnson, Peter
    Slater, Peter
    Walsh, Matt
    NETWORKS, 2011, 58 (03) : 232 - 237
  • [3] ON DOUBLY CONNECTED DOMINATION NUMBER OF SOME SPECIAL GRAPHS
    Ahamad, Sherihatha R.
    Aradais, Alkajim A.
    Laja, Ladznar S.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2024, 41 (03): : 203 - 211
  • [4] Inequalities of Nordhaus-Gaddum type for doubly connected domination number
    Akhbari, M. H.
    Hasni, R.
    Favaron, O.
    Karami, H.
    Sheikholeslami, S. M.
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (14) : 1465 - 1470
  • [5] Some results on the independence number of connected domination critical graphs
    Kaemawichanurat, P.
    Jiarasuksakun, T.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2018, 15 (02) : 190 - 196
  • [6] Average Distance, Connected Hub Number and Connected Domination Number
    Gao, Xiao-Lu
    Xu, Shou-Jun
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2019, 82 (01) : 57 - 75
  • [7] On graphs for which the connected domination number is at most the total domination number
    Schaudt, Oliver
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) : 1281 - 1284
  • [8] A note on connected domination number and leaf number
    Mafuta, P.
    Mukwembi, S.
    Rodrigues, B. G.
    DISCRETE MATHEMATICS, 2023, 346 (02)
  • [9] SOME RESULTS ON CHARACTERIZING THE EDGES OF CONNECTED GRAPHS WITH A GIVEN DOMINATION NUMBER
    SANCHIS, LA
    DISCRETE MATHEMATICS, 1995, 140 (1-3) : 149 - 166
  • [10] Bounds relating the weakly connected domination number to the total domination number and the matching number
    Hattingh, Johannes H.
    Henning, Michael A.
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (14) : 3086 - 3093