Charge-carrier transport and recombination in heteroepitaxial CdTe

被引:33
|
作者
Kuciauskas, Darius [1 ]
Farrell, Stuart [1 ]
Dippo, Pat [1 ]
Moseley, John [1 ]
Moutinho, Helio [1 ]
Li, Jian V. [1 ]
Motz, A. M. Allende [1 ]
Kanevce, Ana [1 ]
Zaunbrecher, Katherine [1 ]
Gessert, Timothy A. [1 ]
Levi, Dean H. [1 ]
Metzger, Wyatt K. [1 ]
Colegrove, Eric [2 ]
Sivananthan, S. [2 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
[2] Univ Illinois, Microphys Lab, Dept Phys, Chicago, IL 60612 USA
关键词
MOLECULAR-BEAM EPITAXY; SURFACE RECOMBINATION; GROWN CDTE; MICROSCOPY; GAAS; HETEROSTRUCTURES; LUMINESCENCE; DYNAMICS; LIFETIME; BULK;
D O I
10.1063/1.4896673
中图分类号
O59 [应用物理学];
学科分类号
摘要
We analyze charge-carrier dynamics using time-resolved spectroscopy and varying epitaxial CdTe thickness in undoped heteroepitaxial CdTe/ZnTe/Si. By employing one-photon and nonlinear two-photon excitation, we assess surface, interface, and bulk recombination. Two-photon excitation with a focused laser beam enables characterization of recombination velocity at the buried epilayer/substrate interface, 17.5 mu m from the sample surface. Measurements with a focused two-photon excitation beam also indicate a fast diffusion component, from which we estimate an electron mobility of 650 cm(2) (Vs)(-1) and diffusion coefficient D of 17 cm(2) s(-1). We find limiting recombination at the epitaxial film surface (surface recombination velocity S-surface - (2.8 +/- 0.3) x 10(5) cm s(-1)) and at the heteroepitaxial interface (interface recombination velocity S-interface - (4.8 +/- 0.5) x 10(5) cm s(-1)). The results demonstrate that reducing surface and interface recombination velocity is critical for photovoltaic solar cells and electronic devices that employ epitaxial CdTe. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] MODEL OF NONEQUILIBRIUM CHARGE-CARRIER RECOMBINATION IN SEMICONDUCTORS CONTAINING NONUNIFORMITIES.
    Lugakov, P.F.
    Shusha, V.V.
    1600, (86):
  • [32] LANGEVIN-TYPE CHARGE-CARRIER RECOMBINATION IN A DISORDERED HOPPING SYSTEM
    ALBRECHT, U
    BASSLER, H
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1995, 191 (02): : 455 - 459
  • [33] Balancing Charge-Carrier Transport and Recombination for Perovskite/TOPCon Tandem Solar Cells with Double-Textured Structures
    Zheng, Jingming
    Wei, He
    Ying, Zhiqin
    Yang, Xi
    Sheng, Jiang
    Yang, Zhenhai
    Zeng, Yuheng
    Ye, Jichun
    ADVANCED ENERGY MATERIALS, 2023, 13 (05)
  • [34] Hopping Model of Charge-Carrier Transport in Organic Nanoparticle Systems
    Fishchuk, I. I.
    Kadashchuk, A.
    Li, X.
    Genoe, J.
    NANOMATERIALS IMAGING TECHNIQUES, SURFACE STUDIES, AND APPLICATIONS, 2013, 146 : 205 - 242
  • [35] Features of charge-carrier transport in phthalocyanine dispersed in binder polymer
    Arlauskas, K
    Gaidelis, V
    Genevicius, K
    Juska, G
    SYNTHETIC METALS, 2000, 109 (1-3) : 101 - 103
  • [36] Charge-Carrier Transport in Large-Area Epitaxial Graphene
    Kisslinger, Ferdinand
    Popp, Matthias
    Jobst, Johannes
    Shallcross, Sam
    Weber, Heiko B.
    ANNALEN DER PHYSIK, 2017, 529 (11)
  • [37] Terahertz Spectroscopy of Nanomaterials: a Close Look at Charge-Carrier Transport
    Kuzel, Petr
    Nemec, Hynek
    ADVANCED OPTICAL MATERIALS, 2020, 8 (03)
  • [38] MOLECULAR ORBITAL STUDIES OF CHARGE-CARRIER TRANSPORT IN ORTHORHOMBIC SULFUR
    CHEN, I
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1970, 15 (01): : 71 - &
  • [39] MODELING OF CHARGE-CARRIER TRANSPORT IN PHOTOETCHING OF GALLIUM-ARSENIDE
    MANNHEIM, E
    ALKIRE, RC
    SANI, RL
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (02) : 546 - 554
  • [40] ENERGY-MODEL OF CHARGE-CARRIER TRANSPORT IN SEMICONDUCTOR COMPONENTS
    ALBINUS, G
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1994, 74 (06): : T623 - T624