A gene-centered C. elegans protein-DNA interaction network

被引:162
|
作者
Deplancke, Bart [1 ]
Mukhopadhyay, Arnab
Ao, Wanyuan
Elewa, Ahmed M.
Grove, Christian A.
Martinez, Natalia J.
Sequerra, Reynaldo
Doucette-Stamm, Lynn
Reece-Hoyes, John S.
Hope, Ian A.
Tissenbaum, Heidi A.
Mango, Susan E.
Walhout, Albertha J. M.
机构
[1] Univ Massachusetts, Sch Med, Program Gene Funct & Express, Worcester, MA 01605 USA
[2] Univ Massachusetts, Sch Med, Program Mol Med, Worcester, MA 01605 USA
[3] Univ Utah, Huntsman Canc Inst, Salt Lake City, UT 84112 USA
[4] Univ Utah, Dept Oncol Sci, Salt Lake City, UT 84112 USA
[5] Agencourt Biosci Corp, Beverly, MA 01915 USA
[6] Univ Leeds, Sch Biol, Fac Biol Sci, Inst Integrat & Comparat Biol, Leeds LS2 9JT, W Yorkshire, England
关键词
D O I
10.1016/j.cell.2006.04.038
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transcription regulatory networks consist of physical and functional interactions between transcription factors (TFs) and their target genes. The systematic mapping of TF-target gene interactions has been pioneered in unicellular systems, using "TF-centered" methods (e.g., chromatin immunoprecipitation). However, metazoan systems are less amenable to such methods. Here, we used "gene-centered" high-throughput yeast one-hybrid (Y1 H) assays to identify 283 interactions between 72 C. elegans digestive tract gene promoters and 117 proteins. The resulting protein-DNA interaction (PDI) network is highly connected and enriched for TFs that are expressed in the digestive tract. We provide functional annotations for similar to 10% of all worm TFs, many of which were previously uncharacterized, and find ten novel putative TFs, illustrating the power of a gene-centered approach. We provide additional in vivo evidence for multiple PDIs and illustrate how the PDI network provides insights into metazoan differential gene expression at a systems level.
引用
收藏
页码:1193 / 1205
页数:13
相关论文
共 50 条
  • [21] Correlating protein-DNA and protein-protein interaction networks
    Manke, T
    Bringas, R
    Vingron, M
    JOURNAL OF MOLECULAR BIOLOGY, 2003, 333 (01) : 75 - 85
  • [22] C. elegans functional genomics: Profiling gene expression patterns with DNA microarrays
    Kim, SK
    DEVELOPMENTAL BIOLOGY, 2000, 222 (01) : 230 - 230
  • [23] Functional identification of microRNA-centered complexes in C. elegans
    Hebbar, Shilpa
    Panzade, Ganesh
    Vashisht, Ajay A.
    Wohlschlegel, James A.
    Veksler-Lublinsky, Isana
    Zinovyeva, Anna Y.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [24] Functional identification of microRNA-centered complexes in C. elegans
    Shilpa Hebbar
    Ganesh Panzade
    Ajay A. Vashisht
    James A. Wohlschlegel
    Isana Veksler-Lublinsky
    Anna Y. Zinovyeva
    Scientific Reports, 12
  • [25] A study of the impact of DNA helical rise on protein-DNA interaction
    Pedone, Francesco
    Mazzei, Filomena
    Santoni, Daniele
    GENOMICS, 2019, 111 (06) : 1620 - 1628
  • [26] Design of a combinatorial DNA microarray for protein-DNA interaction studies
    Mintseris, Julian
    Eisen, Michael B.
    BMC BIOINFORMATICS, 2006, 7 (1)
  • [27] Design of a combinatorial DNA microarray for protein-DNA interaction studies
    Julian Mintseris
    Michael B Eisen
    BMC Bioinformatics, 7
  • [28] Screening for Protein-DNA Interactions by Automatable DNA-Protein Interaction ELISA
    Brand, Luise H.
    Henneges, Carsten
    Schuessler, Axel
    Kolukisaoglu, H. Uener
    Koch, Grit
    Wallmeroth, Niklas
    Hecker, Andreas
    Thurow, Kerstin
    Zell, Andreas
    Harter, Klaus
    Wanke, Dierk
    PLOS ONE, 2013, 8 (10):
  • [29] Dynamic range in the C. elegans brain network
    Antonopoulos, Chris G.
    CHAOS, 2016, 26 (01)
  • [30] Activity and connectivity of C. elegans locomotion network
    Haspel, G.
    JOURNAL OF MOLECULAR NEUROSCIENCE, 2014, 53 : S62 - S62