Electrochemical sensor based on PANI/MnO2-Sb2O3 nanocomposite for selective simultaneous voltammetric determination of ascorbic acid and acetylsalicylic acid

被引:35
|
作者
Puangjan, Apinya [1 ]
Chaiyasith, Suwan [1 ]
Wichitpanya, Saniporn [1 ]
Daengduang, Sirirat [1 ]
Puttota, Silarin [1 ]
机构
[1] King Mongkuts Inst Technol Ladkrabang, Dept Chem, Fac Sci, Bangkok 10520, Thailand
关键词
Polyaniline; Manganese dioxide; Antimony trioxide; Electrochemical; Ascorbic acid; Acetylsalicylic acid; GLASSY-CARBON ELECTRODE; URIC-ACID; IN-SITU; DOPAMINE; NANOPARTICLES; PERFORMANCE; COMPOSITE; BEHAVIOR; MORPHOLOGY; MECHANISM;
D O I
10.1016/j.jelechem.2016.09.019
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A new electrochemical sensor made from nanocomposite of manganese dioxide (MnO2)-antimony trioxide (Sb2O3) was fabricated on polyaniline (PANI) - patterned fluorine doped tin oxide (FTO) electrode (PANI/MnO2-Sb2O3 nanocomposite/FTO) through a simple potentiostatic deposition method. The properties of the nanocomposite were characterized by field emission scanning electron microscopy, X-ray diffraction, electrochemical impedance spectroscopy and other electrochemical techniques. Such nanostructure combines the advantages of PANI (high conductivity and stability) with that of electrocatalytic species (good electrochemical activity). The sensor was applied for simultaneous determination of ascorbic acid (AA) and acetylsalicylic acid (ASA). The linear relationships between their current intensity and concentration were in the range of 6-265.42 nmol L-1 and 1.2-228.68 nmol L-1 with detection limit (S/N = 3) of 1.05 nmol L-1 and 0.20 nmol L-1, respectively. Experimental results demonstrated that the sensor possesses high selectivity and suffers no interference from competing species. Moreover, it successfully detected AA and ASA in human urine samples with highly satisfactory results. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:192 / 201
页数:10
相关论文
共 50 条
  • [11] Electrochemical sensor based on a nanocomposite prepared from TmPO4 and graphene oxide for simultaneous voltammetric detection of ascorbic acid, dopamine and uric acid
    Huang, Haiping
    Yue, Yafeng
    Chen, Zhongzhen
    Chen, Yanan
    Wu, Shuzhen
    Liao, Jinsheng
    Liu, Suijun
    Wen, He-rui
    MICROCHIMICA ACTA, 2019, 186 (03)
  • [12] Novel electrochemical sensor based on N-doped carbon nanotubes and Fe3O4 nanoparticles: Simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid
    Fernandes, Diana M.
    Costa, Marta
    Pereira, Clara
    Bachiller-Baeza, Belen
    Rodriguez-Ramos, Inmaculada
    Guerrero-Ruiz, Antonio
    Freire, Cristina
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2014, 432 : 207 - 213
  • [13] Simultaneous electrochemical determination of acetaminophen, caffeine and ascorbic acid using a new electrochemical sensor based on CuO-graphene nanocomposite
    Khoshhesab, Z. Monsef
    RSC ADVANCES, 2015, 5 (115): : 95140 - 95148
  • [14] An electrochemical sensor for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan based on MWNTs bridged mesocellular graphene foam nanocomposite
    Li, Huixiang
    Wang, Yi
    Ye, Daixin
    Luo, Juan
    Su, Biquan
    Zhang, Song
    Kong, Jilie
    TALANTA, 2014, 127 : 255 - 261
  • [15] 2D-titanium carbide(MXene) based selective electrochemical sensor for simultaneous detection of ascorbic acid, dopamine and uric acid
    Nagaraj Murugan
    Rajendran Jeromea
    Murugan Preethika
    Anandhakumar Sundaramurthy
    Ashok K.Sundramoorthy
    Journal of Materials Science & Technology, 2021, 72 (13) : 122 - 131
  • [16] 2D-titanium carbide (MXene) based selective electrochemical sensor for simultaneous detection of ascorbic acid, dopamine and uric acid
    Murugan, Nagaraj
    Jerome, Rajendran
    Preethika, Murugan
    Sundaramurthy, Anandhakumar
    Sundramoorthy, Ashok K.
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 72 : 122 - 131
  • [17] Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid
    Sheng, Zhen-Huan
    Zheng, Xiao-Qing
    Xu, Jian-Yun
    Bao, Wen-Jing
    Wang, Feng-Bin
    Xia, Xing-Hua
    BIOSENSORS & BIOELECTRONICS, 2012, 34 (01): : 125 - 131
  • [18] Determination of ascorbic acid in biological samples using an electrochemical sensor modified with Au-Cu2O/MWCNTs nanocomposite
    Parkook, Fereshteh
    Shahvandi, Siamak Kiani
    Ghaedi, Mehrorang
    Javadian, Hamedreza
    Parkook, Ali
    DIAMOND AND RELATED MATERIALS, 2024, 144
  • [19] Highly Sensitive Voltammetric Sensor for Determination of Ascorbic Acid Using Graphite Screen Printed Electrode Modified with ZnO/Al2O3 Nanocomposite
    Ganjali, Mohammad Reza
    Nejad, Fariba Garkani
    Beitollahi, Hadi
    Jahani, Shohreh
    Rezapour, Morteza
    Larijani, Bagher
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2017, 12 (04): : 3231 - 3240
  • [20] Amplified Electrochemical Sensor Employing Fe3O4@SiO2/graphene Nanocomposite for Selective Determination of Folic Acid
    Hadi Mohadeseh Safaei
    Masoud Reza Beitollahi
    Journal of Analytical Chemistry, 2020, 75 : 95 - 100