Missing data in longitudinal studies: cross-sectional multiple imputation provides similar estimates to full-information maximum likelihood

被引:41
|
作者
Ferro, Mark A. [1 ,2 ]
机构
[1] McMaster Univ, Dept Psychiat & Behav Neurosci, Hamilton, ON L8S 4K1, Canada
[2] McMaster Univ, Offord Ctr Child Studies, Hamilton, ON L8S 4K1, Canada
关键词
Latent growth curve model; Longitudinal studies; Missing data; models; Statistical; Multiple imputation; Structural equation model;
D O I
10.1016/j.annepidem.2013.10.007
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Purpose: The aim of this research was to examine, in an exploratory manner, whether cross-sectional multiple imputation generates valid parameter estimates for a latent growth curve model in a longitudinal data set with nonmonotone missingness. Methods: A simulated longitudinal data set of N = 5000 was generated and consisted of a continuous dependent variable, assessed at three measurement occasions and a categorical time-invariant independent variable. Missing data had a nonmonotone pattern and the proportion of missingness increased from the initial to the final measurement occasion (5%-20%). Three methods were considered to deal with missing data: listwise deletion, full-information maximum likelihood, and multiple imputation. A latent growth curve model was specified and analysis of variance was used to compare parameter estimates between the full data set and missing data approaches. Results: Multiple imputation resulted in significantly lower slope variance compared with the full data set. There were no differences in any parameter estimates between the multiple imputation and full-information maximum likelihood approaches. Conclusions: This study suggested that in longitudinal studies with nonmonotone missingness, cross-sectional imputation at each time point may be viable and produces estimates comparable with those obtained with full-information maximum likelihood. Future research pursuing the validity of this method is warranted. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:75 / 77
页数:3
相关论文
共 50 条
  • [21] Missing data in longitudinal studies: Comparison of multiple imputation methods in a real clinical setting
    Rosato, Rosalba
    Pagano, Eva
    Testa, Silvia
    Zola, Paolo
    di Cuonzo, Daniela
    JOURNAL OF EVALUATION IN CLINICAL PRACTICE, 2021, 27 (01) : 34 - 41
  • [22] The Relative Performance of Full Information Maximum Likelihood Estimation for Missing Data in Structural Equation Models
    Enders, Craig K.
    Bandalos, Deborah L.
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2001, 8 (03) : 430 - 457
  • [23] Missing Values in Longitudinal Proteome Dynamics Studies: Making a Case for Data Multiple Imputation
    Yan, Yu
    Sankar, Baradwaj Simha
    Mirza, Bilal
    Ng, Dominic C. M.
    Pelletier, Alexander R.
    Huang, Sarah D.
    Wang, Wei
    Watson, Karol
    Wang, Ding
    Ping, Peipei
    JOURNAL OF PROTEOME RESEARCH, 2024, 23 (09) : 4151 - 4162
  • [24] Missing Data in Observational Studies: Investigating Cross-sectional Single Imputation Methods for Assessing Disease Activity in Axial Spondyloarthritis
    Georgiadis, Stylianos
    Pons, Marion
    Rasmussen, Simon Horskjaer
    Hetland, Merete
    Linde, Louise
    DiGuiseppe, Daniela
    Michelsen, Brigitte
    Wallman, Johan Karlsson
    Olofsson, Tor
    Pavelka, Karel
    Zavada, Jakub
    Glintborg, Bente
    Loft, Anne Gitte
    Codreanu, Catalin
    Melim, Daniel
    Almeida, Diogo Esperanca
    Kvien, Tore K.
    Rantalaiho, Vappu
    Peltomaa, Ritva
    Gudbjornsson, Bjorn
    Palsson, Olafur
    Rotariu, Ovidiu
    MacDonald, Ross
    Rotar, Ziga
    Perdan-Pikmajer, Katja
    Laas, Karin
    Iannone, Florenzo
    Ciurea, Adrian
    Ostergaard, Mikkel
    Oernbjerg, Lykke
    ARTHRITIS & RHEUMATOLOGY, 2024, 76 : 1104 - 1107
  • [25] Challenge of missing data in observational studies: investigating cross-sectional imputation methods for assessing disease activity in axial spondyloarthritis
    Georgiadis, Stylianos
    Pons, Marion
    Rasmussen, Simon
    Hetland, Merete Lund
    Linde, Louise
    di Giuseppe, Daniela
    Michelsen, Brigitte
    Wallman, Johan K.
    Olofsson, Tor
    Zavada, Jakub
    Glintborg, Bente
    Loft, Anne G.
    Codreanu, Catalin
    Melim, Daniel
    Almeida, Diogo
    Provan, Sella Aarrestad
    Kvien, Tore K.
    Rantalaiho, Vappu
    Peltomaa, Ritva
    Gudbjornsson, Bjorn
    Palsson, Olafur
    Rotariu, Ovidiu
    Macdonald, Ross
    Rotar, Ziga
    Pirkmajer, Katja Perdan
    Lass, Karin
    Iannone, Florenzo
    Ciurea, Adrian
    Ostergaard, Mikkel
    Ornbjerg, L. M.
    RMD OPEN, 2025, 11 (01):
  • [26] Comparison of missing data handling methods in cognitive diagnosis: Zero replacement, multiple imputation and maximum likelihood estimation
    Song Zhilin
    Guo Lei
    Zheng Tianpeng
    ACTA PSYCHOLOGICA SINICA, 2022, 54 (04) : 426 - +
  • [27] An application of LASSO and multiple imputation techniques to income dynamics with cross-sectional data
    Lucchetti, Leonardo
    Corral, Paul
    Ham, Andres
    Garriga, Santiago
    REVIEW OF INCOME AND WEALTH, 2025, 71 (01)
  • [28] Integrating clinical data from cross-sectional and longitudinal studies
    Li, Yuanxi
    Tucker, Allan
    2014 IEEE 27TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2014, : 465 - +
  • [29] The impact of nonnormality on full information maximum-likelihood estimation for structural equation models with missing data
    Enders, CK
    PSYCHOLOGICAL METHODS, 2001, 6 (04) : 352 - 370
  • [30] Addressing Item-Level Missing Data: A Comparison of Proration and Full Information Maximum Likelihood Estimation
    Mazza, Gina L.
    Enders, Craig K.
    Ruehlman, Linda S.
    MULTIVARIATE BEHAVIORAL RESEARCH, 2015, 50 (05) : 504 - 519