How should we select among computational models of cognition? Although it is commonplace to measure how well each model fits the data, this is insufficient. Good fits can be misleading because they can result from properties of the model that have nothing to do with it being a close approximation to the cognitive process of interest (e.g. overfitting). Selection methods are introduced that factor in these properties when measuring fit. Their success in outperforming standard goodness-of-fit measures stems from a focus on measuring the generalizability of a model's data-fitting abilities, which should be the goal of model selection.
机构:
Univ Calif San Francisco, Dept Biopharmaceut Sci, San Francisco, CA 94143 USAUniv Calif San Francisco, Dept Biopharmaceut Sci, San Francisco, CA 94143 USA
Giacomini, Kathleen M.
Krauss, Ronald M.
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif San Francisco, Dept Biopharmaceut Sci, San Francisco, CA 94143 USA
Krauss, Ronald M.
Roden, Dan M.
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif San Francisco, Dept Biopharmaceut Sci, San Francisco, CA 94143 USA
Roden, Dan M.
Eichelbaum, Michel
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif San Francisco, Dept Biopharmaceut Sci, San Francisco, CA 94143 USA
Eichelbaum, Michel
Hayden, Michael R.
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif San Francisco, Dept Biopharmaceut Sci, San Francisco, CA 94143 USA