Co-Pyrolysis and Co-Gasification of Biomass and Oil Shale

被引:4
|
作者
Jarvik, Oliver [1 ]
Sulg, Mari [1 ]
Cirici, Pau Cascante [1 ]
Eldermann, Meelis [2 ]
Konist, Alar [1 ]
Gusca, Julija [3 ]
Siirde, Andres [1 ]
机构
[1] Tallinn Univ Technol, Dept Energy Technol, Sch Engn, Ehitajate Tee 5, EE-19086 Tallinn, Estonia
[2] Viru Keemia Grp AS, Jarvekula Tee 14, EE-30328 Kohtla Jarve, Estonia
[3] Riga Tech Univ, Inst Energy Syst & Environm, Azenes Iela 12-1, LV-1048 Riga, Latvia
关键词
CFB (circulating fluidized bed); char; fixed bed reactor; heating rate; HEATING RATE; LIGNOCELLULOSIC BIOMASS; WOOD BIOMASS; BIO-OIL; BIOCHAR; TEMPERATURE; CHEMICALS; QUALITY; SOLIDS; YIELD;
D O I
10.2478/rtuect-2020-0038
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The European Union has set an ambitious goal to transform to a carbon neutral economy. The present paper focuses on thermal treatment of oil shale and biomass blends that could be considered as an important pathway for achieving the carbon neutral goal locally in Estonia. The concept of co-pyrolysis and co-gasification of biomass and oil shale offers various advantages such as higher liquid product yield and higher char conversion than if the oil shale and biomass particles were processed individually. In the paper, an overview of the planned actions for merging oil shale industry carbon neutral economy is given. The selected approaches are justified with information found in scientific literature and initial experimental results. Further, the possible future developments for gasification and pyrolysis in Estonia are also highlighted.
引用
收藏
页码:624 / 637
页数:14
相关论文
共 50 条
  • [41] Co-gasification of oil palm biomass in a pilot scale downdraft gasifier
    Anyaoha, Kelechi E.
    Sakrabani, Ruben
    Patchigolla, Kumar
    Mouazen, Abdul M.
    ENERGY REPORTS, 2020, 6 : 1888 - 1896
  • [42] Apparent Kinetics of Co-Gasification of Biomass and Vacuum Gas Oil (VGO)
    Al-Attas, Tareq A.
    Lucky, Rahima A.
    Hossain, Mohammad M.
    CHEMISTRY-AN ASIAN JOURNAL, 2021, 16 (05) : 507 - 520
  • [43] Co-pyrolysis of oil shale and High density polyethylene: Structural characterization of the oil
    Aboulkas, A.
    Makayssi, T.
    Bilali, L.
    El Harfi, K.
    Nadifiyine, M.
    Benchanaa, M.
    FUEL PROCESSING TECHNOLOGY, 2012, 96 : 203 - 208
  • [44] Comparison of oil shales from different deposits: Oil shale pyrolysis and co-pyrolysis with ash
    Oja, V.
    Elenurm, A.
    Rohtla, I.
    Tali, E.
    Tearo, E.
    Yanchilin, A.
    OIL SHALE, 2007, 24 (02) : 101 - 108
  • [45] Product distribution and interaction of co-pyrolysis of biomass and oil slurry
    Huang W.
    Hao Z.
    Zhang Q.
    Gao Z.
    Zhang H.
    Peng Z.
    Yang K.
    Liang L.
    Meitan Xuebao/Journal of the China Coal Society, 2022, 47 (01): : 480 - 488
  • [46] Co-pyrolysis of biomass woodchips with Ca-rich oil shale fuel in a continuous feed reactor
    Ceron, Alejandro Lyons
    Pihu, Tonu
    Konist, Alar
    OIL SHALE, 2024, 41 (03) : 208 - 235
  • [47] Possibilities of torrefied biomass co-gasification and co-firing
    Witt, J., 1600, Deutsche Wissens. Gesell. fur Erdoel, Erdgas und Kohle EV
  • [48] Co-pyrolysis characteristic and dynamic analysis of alkali lignin and oil shale
    Bai J.
    Shao J.
    Li M.
    Jia C.
    Wang Q.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2016, 32 (07): : 187 - 193
  • [49] A TG-FTIR investigation to the co-pyrolysis of oil shale with coal
    Li, Shuangshuang
    Ma, Xiaoqian
    Liu, Guicai
    Guo, Mingxuan
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2016, 120 : 540 - 548
  • [50] Co-pyrolysis characteristics of raw/torrefied corn stalk and oil shale
    Zhai, Yingmei
    Yang, Tianhua
    Zhang, Yue
    Zhu, Yiming
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2023, 171