Semi-parametric estimation of the autoregressive parameter in non-Gaussian Ornstein-Uhlenbeck processes

被引:1
|
作者
Jammalamadaka, S. Rao [1 ]
Taufer, Emanuele [2 ]
机构
[1] Univ Calif Santa Barbara, Dept Stat & Appl Probabil, Santa Barbara, CA 93106 USA
[2] Univ Trento, Dept Econ & Management, I-38122 Trento, Italy
关键词
Adaptive estimation; Kernel density estimation; Levy process; Minimum squared distance to independence; Self-decomposable distribution; LEAST-SQUARES ESTIMATOR; ADAPTIVE ESTIMATION; PROCESSES DRIVEN; REGRESSION; INFERENCE; DISTANCE; DENSITY; MODELS; TESTS;
D O I
10.1080/03610918.2018.1468456
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers the problem of estimating the autoregressive parameter in discretely observed Ornstein-Uhlenbeck processes. Two consistent estimators are proposed: one obtained by maximizing a kernel-based likelihood function, and another by minimizing a Kolmogorov-type distance from independence. After establishing the consistency of these estimators, their finite-sample performance and possible normality in large samples, is investigated by means of extensive simulations. An illustrative example to credit rating is discussed.
引用
收藏
页码:2791 / 2811
页数:21
相关论文
共 50 条