Efficient self-stabilizing algorithms for minimal total k-dominating sets in graphs

被引:7
|
作者
Belhoul, Yacine [1 ,2 ]
Yahiaoui, Said [1 ,2 ]
Kheddouci, Hamamache [3 ]
机构
[1] Univ A Mira, Dept Informat, Bejaia 06000, Algeria
[2] CERIST, Algiers 16030, Algeria
[3] Univ Lyon 1, CNRS, LIRIS, UMR5205, F-69622 Villeurbanne, France
关键词
Distributed self-stabilizing algorithms; Graph algorithms; Minimal total dominating set; Minimal total k-domination; k-Tuple total dominating set; SYSTEMS;
D O I
10.1016/j.ipl.2014.02.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose the first polynomial self-stabilizing distributed algorithm for the minimal total dominating set problem in an arbitrary graph. Then, we generalize the proposed algorithm for the minimal total k-dominating set problem. Under an unfair distributed scheduler, the proposed algorithms converge in O(mn) moves starting from any arbitrary state, and require O(logn) storage per node. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:339 / 343
页数:5
相关论文
共 50 条
  • [21] Game-Theoretic Approach to Self-stabilizing Minimal Independent Dominating Sets
    Yen, Li-Hsing
    Sun, Guang-Hong
    INTERNET AND DISTRIBUTED COMPUTING SYSTEMS, 2018, 11226 : 173 - 184
  • [22] A self-stabilizing algorithm for two disjoint minimal dominating sets with safe convergence
    Kamei, Sayaka
    Kakugawa, Hirotsugu
    2018 IEEE 24TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS 2018), 2018, : 365 - 372
  • [23] Connected k-dominating graphs
    Mynhardt, C. M.
    Teshima, L. E.
    Roux, A.
    DISCRETE MATHEMATICS, 2019, 342 (01) : 145 - 151
  • [24] Minimal Graphs with Disjoint Dominating and Total Dominating Sets
    Henning, Michael A.
    Topp, Jerzy
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (01) : 47 - 74
  • [25] Self-stabilizing 2-minimal dominating set algorithms based on loop composition
    Maruyama, Syohei
    Sudo, Yuichi
    Kamei, Sayaka
    Kakugawa, Hirotsugu
    THEORETICAL COMPUTER SCIENCE, 2024, 983
  • [26] Self-stabilizing algorithms for {k}-domination
    Gairing, M
    Hedetniemi, ST
    Kristiansen, P
    McRae, AA
    SELF-STABILIZING SYSTEMS, PROCEEDINGS, 2003, 2704 : 49 - 60
  • [27] On the Number of k-Dominating Independent Sets
    Nagy, Zoltan Lorant
    JOURNAL OF GRAPH THEORY, 2017, 84 (04) : 566 - 580
  • [28] Eulerian k-dominating reconfiguration graphs
    Messinger, M.E.
    Porter, Amanda
    arXiv,
  • [29] On the number of independent and k-dominating sets in graphs with average vertex degree at most k
    Taletskii, D. S.
    SBORNIK MATHEMATICS, 2023, 214 (11) : 1627 - 1650
  • [30] Eulerian k-dominating reconfiguration graphs
    Messinger, M. E.
    Porter, Amanda
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2025, 27 (02):