Well-Posedness for Generalized Set Equilibrium Problems

被引:1
|
作者
Lin, Yen-Cherng [1 ]
机构
[1] China Med Univ, Dept Occupat Safety & Hlth, Coll Publ Hlth, Taichung 40421, Taiwan
关键词
MIXED VARIATIONAL-INEQUALITIES; FIXED-POINT PROBLEMS; VECTOR OPTIMIZATION; INCLUSION PROBLEMS;
D O I
10.1155/2013/419053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the well-posedness for generalized set equilibrium problems (GSEP) and propose two types of the well-posed concepts for these problems in topological vector space settings. These kinds of well-posedness arise from some well-posedness in the vector settings. We also study the relationship between these well-posedness concepts and present several criteria for the well-posedness of GSEP. Our results are new or include as special cases recent existing results.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Well-posedness for parametric vector equilibrium problems with applications
    Kimura, Kenji
    Liou, Yeong-Cheng
    Wu, Soon-Yi
    Yao, Jen-Chih
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2008, 4 (02) : 313 - 327
  • [32] Levitin–Polyak well-posedness for split equilibrium problems
    Soumitra Dey
    Aviv Gibali
    Simeon Reich
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [33] Tykhonov Well-Posedness for Quasi-Equilibrium Problems
    M. Darabi
    J. Zafarani
    Journal of Optimization Theory and Applications, 2015, 165 : 458 - 479
  • [34] LEVITIN-POYAK WELL-POSEDNESS OF GENERALIZED VECTOR EQUILIBRIUM PROBLEMS WITH FUNCTIONAL CONSTRAINTS
    Wang Gang
    Huang Xuexiang
    Zhang Jie
    Chen Guangya
    ACTA MATHEMATICA SCIENTIA, 2010, 30 (05) : 1400 - 1412
  • [35] LEVITIN-POLYAK WELL-POSEDNESS OF GENERALIZED VECTOR QUASI-EQUILIBRIUM PROBLEMS
    Li, M. H.
    Li, S. J.
    Zhang, W. Y.
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2009, 5 (04) : 683 - 696
  • [36] Scalarization and pointwise well-posedness for set optimization problems
    Long, Xian-Jun
    Peng, Jian-Wen
    Peng, Zai-Yun
    JOURNAL OF GLOBAL OPTIMIZATION, 2015, 62 (04) : 763 - 773
  • [37] Well-Posedness for Variational Inequality Problems with Generalized Monotone Set-Valued Maps
    Lalitha, C. S.
    Bhatia, Guneet
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2009, 30 (5-6) : 548 - 565
  • [38] SCALARIZATION AND WELL-POSEDNESS FOR SET OPTIMIZATION PROBLEMS USING GENERALIZED ORIENTED DISTANCE FUNCTION
    Li, TaiYong
    Xu, GuangHui
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2025, 21 (02) : 1584 - 1599
  • [39] Scalarization and pointwise well-posedness for set optimization problems
    Xian-Jun Long
    Jian-Wen Peng
    Zai-Yun Peng
    Journal of Global Optimization, 2015, 62 : 763 - 773
  • [40] LEVITIN-POYAK WELL-POSEDNESS OF GENERALIZED VECTOR EQUILIBRIUM PROBLEMS WITH FUNCTIONAL CONSTRAINTS
    王刚
    黄学祥
    张杰
    陈光亚
    ActaMathematicaScientia, 2010, 30 (05) : 1400 - 1412