Self-consistent modelling of heating synergy between NBI and ICRH in JET deuterium plasmas

被引:7
|
作者
Joly, J. [1 ]
Garcia, J. [1 ]
Imbeaux, F. [1 ]
Dumont, R. [1 ]
Schneider, M. [2 ]
Johnson, T. [3 ]
Artaud, J. F. [1 ]
机构
[1] CEA, IRFM, F-13108 St Paul Les Durance, France
[2] ITER Org, Route Vinon sur Verdon,CS 90 046, F-13067 St Paul Les Durance, France
[3] Royal Inst Technol, KTH, SE-10044 Stockholm, Sweden
关键词
plasma; heating; ICRH; tokamak; MONTE-CARLO OPERATORS; TRANSPORT; WAVES;
D O I
10.1088/1361-6587/ab1f54
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Auxiliary heating is essential to initiate fusion in future tokamaks. In particular, ion heating tends to maximise the alpha power generation by increasing the thermal ion temperature. In order to simulate the plasma heating by ion cyclotron radio frequency waves, the EVE code, a full wave code for IC wave propagation, and SPOT, an orbit following Monte Carlo code combined with the RFOF library which calculates the absorption of wave by ions, have been coupled together. This new package is used for simulating JET plasmas with strong interplay between ion cyclotron resonant heating and neutral beam injection. Simulations shows that up to 20% of the neutron rate generated in recent JET D plasmas is due to the synergy between both heating mechanisms. However, the H concentration plays a critical role on such interplay, because the synergy efficiency weakens with the H concentration. Therefore, the control of the H concentration is mandatory for optimising the fusion reaction rate generation at JET.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Self-consistent Modelling of the interstellar medium
    Dieter Breitschwerdt
    Astrophysics and Space Science, 2004, 289 : 489 - 498
  • [32] ICRF heating of JET plasmas with the third harmonic deuterium resonance
    JET Joint Undertaking, Abingdon, United Kingdom
    Nucl Fusion, 2 (265-278):
  • [33] Fundamental ion cyclotron resonance heating of JET deuterium plasmas
    Krasilnikov, A. V.
    Van Eester, D.
    Lerche, E.
    Ongena, J.
    Amosov, V. N.
    Biewer, T.
    Bonheure, G.
    Crombe, K.
    Ericsson, G.
    Esposito, B.
    Giacomelli, L.
    Hellesen, C.
    Hjalmarsson, A.
    Jachmich, S.
    Kallne, J.
    Kaschuck, Yu A.
    Kiptily, V.
    Leggate, H.
    Mailloux, J.
    Marocco, D.
    Mayoral, M-L
    Popovichev, S.
    Riva, M.
    Santala, M.
    Stamp, M.
    Vdovin, V.
    Walden, A.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (04)
  • [34] ICRF heating of JET plasmas with the third harmonic deuterium resonance
    Eriksson, LG
    Mantsinen, MJ
    Rimini, FG
    Nguyen, F
    Gormezano, C
    Start, DFH
    Gondhalekar, A
    NUCLEAR FUSION, 1998, 38 (02) : 265 - 278
  • [35] Self-consistent measurement of the equation of state of liquid deuterium
    Falk, K.
    Regan, S. P.
    Vorberger, J.
    Barrios, M. A.
    Boehly, T. R.
    Fratanduono, D. E.
    Glenzer, S. H.
    Hicks, D. G.
    Hu, S. X.
    Murphy, C. D.
    Radha, P. B.
    Rothman, S.
    Jephcoat, A. P.
    Watt, J. S.
    Gericke, D. O.
    Gregori, G.
    HIGH ENERGY DENSITY PHYSICS, 2012, 8 (01) : 76 - 80
  • [36] Study of ICRH scenarios for thermal ion heating in JET D-T plasmas
    Kazakov, Ye. O.
    Kiptily, V. G.
    Sharapov, S. E.
    Van Eester, D.
    NUCLEAR FUSION, 2012, 52 (09)
  • [37] Numerical modeling of the coupling of an ICRH antenna with a plasma with self-consistent antenna currents
    Pécoul, S
    Heuraux, S
    Koch, R
    Leclert, G
    COMPUTER PHYSICS COMMUNICATIONS, 2002, 146 (02) : 166 - 187
  • [38] Self-consistent chemical model of partially ionized plasmas
    Arkhipov, Yu. V.
    Baimbetov, F. B.
    Davletov, A. E.
    PHYSICAL REVIEW E, 2011, 83 (01):
  • [39] Self-consistent particle model of discharge plasmas in hydrogen
    Longo, S.
    Capitelli, M.
    Diomede, P.
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2006, 4 (02) : 233 - 242
  • [40] Self-consistent discharge characteristics of collisional helicon plasmas
    Cho, SW
    Lieberman, MA
    PHYSICS OF PLASMAS, 2003, 10 (03) : 882 - 890