Temporal Effects on Pre-trained Models for Language Processing Tasks

被引:18
|
作者
Agarwal, Oshin [1 ]
Nenkova, Ani [2 ]
机构
[1] Univ Penn, Philadelphia, PA 19104 USA
[2] Adobe Res, New York, NY USA
关键词
D O I
10.1162/tacl_a_00497
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Keeping the performance of language technologies optimal as time passes is of great practical interest. We study temporal effects on model performance on downstream language tasks, establishing a nuanced terminology for such discussion and identifying factors essential to conduct a robust study. We present experiments for several tasks in English where the label correctness is not dependent on time and demonstrate the importance of distinguishing between temporal model deterioration and temporal domain adaptation for systems using pre-trained representations. We find that, depending on the task, temporal model deterioration is not necessarily a concern. Temporal domain adaptation, however, is beneficial in all cases, with better performance for a given time period possible when the system is trained on temporally more recent data. Therefore, we also examine the efficacy of two approaches for temporal domain adaptation without human annotations on new data. Self-labeling shows consistent improvement and notably, for named entity recognition, leads to better temporal adaptation than even human annotations.
引用
收藏
页码:904 / 921
页数:18
相关论文
共 50 条
  • [31] VLATTACK: Multimodal Adversarial Attacks on Vision-Language Tasks via Pre-trained Models
    Yin, Ziyi
    Ye, Muchao
    Zhang, Tianrong
    Du, Tianyu
    Zhu, Jinguo
    Liu, Han
    Chen, Jinghui
    Wang, Ting
    Ma, Fenglong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [32] Dynamic Knowledge Distillation for Pre-trained Language Models
    Li, Lei
    Lin, Yankai
    Ren, Shuhuai
    Li, Peng
    Zhou, Jie
    Sun, Xu
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 379 - 389
  • [33] Prompt Tuning for Discriminative Pre-trained Language Models
    Yao, Yuan
    Dong, Bowen
    Zhang, Ao
    Zhang, Zhengyan
    Xie, Ruobing
    Liu, Zhiyuan
    Lin, Leyu
    Sun, Maosong
    Wang, Jianyong
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), 2022, : 3468 - 3473
  • [34] Impact of Morphological Segmentation on Pre-trained Language Models
    Westhelle, Matheus
    Bencke, Luciana
    Moreira, Viviane P.
    INTELLIGENT SYSTEMS, PT II, 2022, 13654 : 402 - 416
  • [35] A Close Look into the Calibration of Pre-trained Language Models
    Chen, Yangyi
    Yuan, Lifan
    Cui, Ganqu
    Liu, Zhiyuan
    Ji, Heng
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 1, 2023, : 1343 - 1367
  • [36] Deep Entity Matching with Pre-Trained Language Models
    Li, Yuliang
    Li, Jinfeng
    Suhara, Yoshihiko
    Doan, AnHai
    Tan, Wang-Chiew
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2020, 14 (01): : 50 - 60
  • [37] A Survey of Knowledge Enhanced Pre-Trained Language Models
    Hu, Linmei
    Liu, Zeyi
    Zhao, Ziwang
    Hou, Lei
    Nie, Liqiang
    Li, Juanzi
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (04) : 1413 - 1430
  • [38] Exploring Robust Overfitting for Pre-trained Language Models
    Zhu, Bin
    Rao, Yanghui
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, 2023, : 5506 - 5522
  • [39] Commonsense Knowledge Transfer for Pre-trained Language Models
    Zhou, Wangchunshu
    Le Bras, Ronan
    Choi, Yejin
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, 2023, : 5946 - 5960
  • [40] Self-conditioning Pre-Trained Language Models
    Suau, Xavier
    Zappella, Luca
    Apostoloff, Nicholas
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,