Yang-Lee zeros of the antiferromagnetic Ising model

被引:58
|
作者
Kim, SY [1 ]
机构
[1] Korea Inst Adv Study, Sch Computat Sci, Seoul 130722, South Korea
关键词
D O I
10.1103/PhysRevLett.93.130604
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
There exists the famous circle theorem on the Yang-Lee zeros of the ferromagnetic Ising model. However, the Yang-Lee zeros of the antiferromagnetic Ising model are much less well understood than those of the ferromagnetic model. The precise distribution of the Yang-Lee zeros of the antiferromagnetic Ising model only with nearest-neighbor interaction J on LxL square lattices is determined as a function of temperature a=e(2betaJ) (J<0), and its relation to the phase transitions is investigated. In the thermodynamic limit (L-->infinity), the distribution of the Yang-Lee zeros of the antiferromagnetic Ising model cuts the positive real axis in the complex x=e(-2betaH) plane, resulting in the critical magnetic field +/-H-c(a), where H-c>0 below the critical temperature a(c)=root2-1. The results suggest that the value of the scaling exponent y(h) is 1 along the critical line for a<a(c).
引用
收藏
页码:130604 / 1
页数:4
相关论文
共 50 条
  • [21] On connectivity of Julia sets of Yang-Lee zeros
    Qiao, JY
    Li, YH
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 222 (02) : 319 - 326
  • [22] Unusual Singularity for an Ising Model Near the Yang-Lee Edge
    Knezevic, Dragica
    WOMEN IN PHYSICS, 2013, 1517 : 192 - 192
  • [23] Julia sets and Yang-Lee zeros of the Potts model on Bethe lattices
    Ghulghazaryan, R
    Ananikyan, N
    Jonassen, TM
    COMPUTATIONAL SCIENCE - ICCS 2003, PT I, PROCEEDINGS, 2003, 2657 : 85 - 94
  • [24] FRACTAL DIMENSION OF THE JULIA SET ASSOCIATED WITH THE YANG-LEE ZEROS OF THE ISING-MODEL ON THE CAYLEY TREE - COMMENT
    MONROE, JL
    EUROPHYSICS LETTERS, 1995, 29 (02): : 187 - 188
  • [25] Yang-Lee zeros of a random matrix model for QCD at finite density
    Halasz, MA
    Jackson, AD
    Verbaarschot, JJM
    PHYSICS LETTERS B, 1997, 395 (3-4) : 293 - 297
  • [26] Yang-Lee and Fisher zeros of multisite interaction Ising models on the Cayley-type lattices
    Ananikian, NS
    Ghulghazaryan, RG
    PHYSICS LETTERS A, 2000, 277 (4-5) : 249 - 256
  • [27] YANG-LEE EDGE FOR THE TWO-DIMENSIONAL ISING-MODEL
    BAKER, GA
    BENOFY, LP
    ENTING, IG
    PHYSICAL REVIEW B, 1986, 33 (05): : 3187 - 3208
  • [28] Yang-Lee zeros for real-space condensation
    Burda, Zdzislaw
    Johnston, Desmond A.
    Kieburg, Mario
    PHYSICAL REVIEW E, 2025, 111 (01)
  • [29] Lee-Yang zeros and the Ising model on the Sierpinski gasket
    Burioni, R
    Cassi, D
    Donetti, L
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (27): : 5017 - 5027
  • [30] YANG-LEE ZEROS, JULIA SETS, AND THEIR SINGULARITY SPECTRA
    HU, B
    LIN, B
    PHYSICAL REVIEW A, 1989, 39 (09): : 4789 - 4796