An experimental study of the vertical structure of the marine atmospheric boundary layer

被引:0
|
作者
Michopoulos, J. A. [1 ]
Helmis, C. G. [1 ]
Wang, Q. [1 ]
Kalogiros, J. [1 ]
Gao, Z. [1 ]
Asimakopoulos, D. N. [1 ]
机构
[1] Univ Athens, Dept Phys, Div Appl Phys, Athens 15784, Greece
关键词
Marine Atmospheric Boundary Layer; sodar; turbulence parameters;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The main aim of this work was the experimental study of the vertical structure of the mean and turbulent characteristics of the Marine Atmospheric Boundary Layer (MABL). The experimental campaign was carried out at the coastal area of a small island (Nantucket, Massachusetts, USA) that is characterized by flat terrain. The experimental instrumentation, consisted of a 3D commercial acoustic sounder system (sodar), a 10m meteorological mast equipped with low and fast response meteorological instruments measuring at two levels wind, temperature and humidity and a radiosonde system calculating the horizontal wind speed and direction, temperature and humidity profiles. A first evaluation of the available data for one typical experimental day revealed a 350m deep MABL, characterized with high relative humidity values and associated with a strong temperature height inversion. The wind speed and direction successive one-hour averaged profiles measured by the sodar, give information on the time evolution of the MABL's vertical structure. Finally, the variances of the vertical wind speed profiles estimated by the sodar, depend on the stability of the Atmospheric Boundary Layer and follow the similarity theory for both stable and unstable conditions.
引用
收藏
页码:601 / 608
页数:8
相关论文
共 50 条
  • [21] Determination of Vertical Refraction in the Atmospheric Boundary Layer
    Dementiev, D. V.
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2020, 56 (04) : 422 - 427
  • [22] Modelling the vertical structure of the atmospheric boundary layer over Arctic fjords in Svalbard
    Kilpelainen, T.
    Vihma, T.
    Manninen, M.
    Sjoblom, A.
    Jakobson, E.
    Palo, T.
    Maturilli, M.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2012, 138 (668) : 1867 - 1883
  • [23] Characteristics of the Summertime Boundary Layer and Atmospheric Vertical Structure over the Sichuan Basin
    Jiang, Xingwen
    Li, Yueqing
    Zhao, Xingbing
    Koike, Toshio
    JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2012, 90C : 33 - 54
  • [24] The vertical structure of turbulent momentum flux in the lower part of the atmospheric boundary layer
    Kouznetsov, Rostislav
    Kramar, Valerh F.
    Kallistratova, Margarita A.
    METEOROLOGISCHE ZEITSCHRIFT, 2007, 16 (04) : 367 - 373
  • [25] An overview of the vertical structure of the atmospheric boundary layer in the central Arctic during MOSAiC
    Jozef, Gina C.
    Cassano, John J.
    Dahlke, Sandro
    Dice, Mckenzie
    Cox, Christopher J.
    de Boer, Gijs
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2024, 24 (02) : 1429 - 1450
  • [26] Vertical Structure of the Coastal Atmospheric Boundary Layer Based on Terra/MODIS Data
    Kim, Dong Su
    Kwon, Byung Hyuk
    ATMOSPHERE-KOREA, 2007, 17 (03): : 281 - 289
  • [27] Impact of swell on the marine atmospheric boundary layer
    Kudryavtsev, VN
    Makin, VK
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2004, 34 (04) : 934 - 949
  • [28] Observational Study of Marine Atmospheric Boundary Layer Characteristics during Swell
    Smedman, A.
    Hogstrom, U.
    Sahlee, E.
    Drennan, W. M.
    Kahma, K. K.
    Pettersson, H.
    Zhang, F.
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2009, 66 (09) : 2747 - 2763
  • [29] Vertical velocity structure of marine boundary layer trade wind cumulus clouds
    Ghate, Virendra P.
    Miller, Mark A.
    DiPretore, Lynne
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116
  • [30] The Turbulent Structure of the Marine Atmospheric Boundary Layer during and before a Cold Front
    Huang, Jian
    Zou, Zhongshui
    Zeng, Qingcun
    Li, Peiliang
    Song, Jinbao
    Wu, Lin
    Zhang, Jun A.
    Li, Shuiqing
    Chan, Pak-Wai
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2021, 78 (03) : 863 - 875