Neural expert system for loading of overhead lines

被引:0
|
作者
Negnevitsky, M [1 ]
Le, TL [1 ]
机构
[1] Univ Tasmania, Dept Elect Engn & Comp Sci, Hobart, Tas 7001, Australia
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes an intelligent neural expert system for loading overhead power transmission lines. The system is used to evaluate the:thermal rating and temperature rise of power transmission lines. An artificial neural network (ANN) was trained for the prediction of hourly or instantaneous values of the irradiance dependent on astronomic and meteor-climatic conditions. The developed intelligent system can be used to assist operators in loading power transmission lines in different operating and weather conditions.
引用
收藏
页码:797 / 800
页数:4
相关论文
共 50 条
  • [41] RECOLLECTIONS OF OVERHEAD LINES
    BOYSE, CO
    ELECTRONICS AND POWER, 1969, 15 (FEB): : 72 - &
  • [42] Aluminium for overhead lines
    不详
    ZEITSCHRIFT DES VEREINES DEUTSCHER INGENIEURE, 1922, 66 : 260 - 260
  • [43] Lightning Performance Analysis of Overhead Subtransmission Lines in Power System
    Phayomhom, A.
    Kulwongwit, W.
    Rugthaicharoencheep, N.
    2014 INTERNATIONAL CONFERENCE ON LIGHTNING PROTECTION (ICLP), 2014, : 2024 - 2027
  • [44] HANDBOOKS FOR OVERHEAD LINES
    CORDOVA, AH
    EPRI JOURNAL, 1983, 8 (04): : 26 - 27
  • [45] Statistical evaluation of lightning overvoltages on overhead distribution lines using neural networks
    Martinez, JA
    González-Molina, F
    2001 IEEE POWER ENGINEERING SOCIETY WINTER MEETING, CONFERENCE PROCEEDINGS, VOLS 1-3, 2001, : 1133 - 1138
  • [46] Statistical evaluation of lightning overvoltages on overhead distribution lines using neural networks
    Martinez, JA
    Gonzalez-Molina, F
    IEEE TRANSACTIONS ON POWER DELIVERY, 2005, 20 (03) : 2219 - 2226
  • [47] Probabilistic prediction for the ampacity of overhead lines using Quantile Regression Neural Network
    Jin, Xu
    Cai, Fudong
    Wang, Mengxia
    Sun, Yang
    Zhou, Shengyuan
    2020 INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT AND BIOENGINEERING (ICEEB 2020), 2020, 185
  • [48] Curative measures identification in congestion management exploiting temporary admissible thermal loading of overhead lines
    Kollenda, Katharina
    Schrief, Alexander
    Biele, Charlotte
    Lindner, Martin
    Sundorf, Niklas
    Hoffrichter, Andre
    Roehder, Andreas
    Moser, Albert
    Rehtanz, Christian
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2022, 16 (16) : 3171 - 3183
  • [49] Variational concepts for arcs and lines in an expert system environment
    1784, Publ by Pergamon Press Inc, Tarrytown, NY, USA
  • [50] Memory and neural network based expert system
    Shin, CK
    Park, SC
    DATA MINING AND KNOWLEDGE DISCOVERY: THEORY, TOOLS, AND TECHNOLOGY, 1999, 3695 : 83 - 91