Investigating evolutionary perspective of carcinogenesis with single-cell transcriptome analysis

被引:7
|
作者
Zhang, Xi [1 ,4 ]
Zhang, Cheng [1 ,4 ]
Li, Zhongjun [1 ,4 ]
Zhong, Jiangjian [3 ]
Weiner, Leslie P. [2 ]
Zhong, Jiang F. [1 ]
机构
[1] Univ So Calif, Keck Sch Med, Dept Pathol, Los Angeles, CA 90033 USA
[2] Univ So Calif, Keck Sch Med, Dept Neurol, Los Angeles, CA 90033 USA
[3] Z Genet Med LLC, Temple, CA 91780 USA
[4] Third Mil Med Univ, Xinqiao Hosp, Dept Hematol & Blood Transfus, Chongqing 400037, Peoples R China
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Single-cell transcriptome; cancer molecular pathways; leukemia; CHRONIC MYELOID-LEUKEMIA; BONE-MARROW; STEM-CELLS; INTRATUMOR HETEROGENEITY; MICROFLUIDIC DEVICES; GENE-REGULATION; IMATINIB; CML; INTERFERON; NILOTINIB;
D O I
10.5732/cjc.012.10291
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
We developed phase-switch microfluidic devices for molecular profiling of a large number of single cells. Whole genome microarrays and RNA-sequencing are commonly used to determine the expression levels of genes in cell lysates (a physical mix of millions of cells) for inferring gene functions. However, cellular heterogeneity becomes an inherent noise in the measurement of gene expression. The unique molecular characteristics of individual cells, as well as the temporal and quantitative information of gene expression in cells, are lost when averaged among all cells in cell lysates. Our single-cell technology overcomes this limitation and enables us to obtain a large number of single-cell transcriptomes from a population of cells. A collection of single-cell molecular profiles allows us to study carcinogenesis from an evolutionary perspective by treating cancer as a diverse population of cells with abnormal molecular characteristics. Because a cancer cell population contains cells at various stages of development toward drug resistance, clustering similar single-cell molecular profiles could reveal how drug-resistant subclones evolve during cancer treatment. Here, we discuss how single-cell transcriptome analysis technology could enable the study of carcinogenesis from an evolutionary perspective and the development of drug-resistance in leukemia. The single-cell transcriptome analysis reported here could have a direct and significant impact on current cancer treatments and future personalized cancer therapies.
引用
收藏
页码:636 / 639
页数:4
相关论文
共 50 条
  • [31] Exploring Precise Medication Strategies for OSCC Based on Single-Cell Transcriptome Analysis from a Dynamic Perspective
    Meng, Qingkang
    Wu, Feng
    Li, Guoqi
    Xu, Fei
    Liu, Lei
    Zhang, Denan
    Lu, Yangxu
    Xie, Hongbo
    Chen, Xiujie
    CANCERS, 2022, 14 (19)
  • [32] SINGLE-CELL TRANSCRIPTOME ANALYSIS OF HUMAN SPERMATOGONIAL STEM CELLS
    Song, Hye-Won
    Hsieh, Tung-Chin
    Hammoud, Sue
    Wilkinson, Miles
    JOURNAL OF UROLOGY, 2018, 199 (04): : E653 - E653
  • [33] Single-cell Transcriptome Analysis of Mouse Leukocytes in Inflammatory Stimulation
    Osato, Naoki
    Shigeta, Hironori
    Seno, Shigeto
    Uchida, Yutaka
    Kikuta, Junichi
    Ishii, Masaru
    Matsuda, Hideo
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 1229 - 1231
  • [34] Smart-RRBS for single-cell methylome and transcriptome analysis
    Hongcang Gu
    Ayush T. Raman
    Xiaoxue Wang
    Federico Gaiti
    Ronan Chaligne
    Arman W. Mohammad
    Aleksandra Arczewska
    Zachary D. Smith
    Dan A. Landau
    Martin J. Aryee
    Alexander Meissner
    Andreas Gnirke
    Nature Protocols, 2021, 16 : 4004 - 4030
  • [35] Research strategies for single-cell transcriptome analysis in plant leaves
    Liu, Zhixin
    Yu, Xiaole
    Qin, Aizhi
    Zhao, Zihao
    Liu, Yumeng
    Sun, Susu
    Liu, Hao
    Guo, Chenxi
    Wu, Rui
    Yang, Jincheng
    Hu, Mengke
    Bawa, George
    Sun, Xuwu
    PLANT JOURNAL, 2022, 112 (01): : 27 - 37
  • [36] Single-Cell Transcriptome Analysis in Melanoma Using Network Embedding
    Wang, Liming
    Liu, Fangfang
    Du, Longting
    Qin, Guimin
    FRONTIERS IN GENETICS, 2021, 12
  • [37] Screening of biomarkers for hepatocellular adenomas by single-cell transcriptome analysis
    Iwabuchi, Sadahiro
    Kawaguchi, Kazunori
    Honda, Masao
    Yamashita, Taro
    Yamashita, Tatsuya
    Kaneko, Shuichi
    Hashimoto, Shinichi
    CANCER SCIENCE, 2021, 112 : 804 - 804
  • [38] Smart-RRBS for single-cell methylome and transcriptome analysis
    Gu, Hongcang
    Raman, Ayush T.
    Wang, Xiaoxue
    Gaiti, Federico
    Chaligne, Ronan
    Mohammad, Arman W.
    Arczewska, Aleksandra
    Smith, Zachary D.
    Landau, Dan A.
    Aryee, Martin J.
    Meissner, Alexander
    Gnirke, Andreas
    NATURE PROTOCOLS, 2021, 16 (08) : 4004 - +
  • [39] Integrative single-cell chromatin and transcriptome analysis of human plasma cell differentiation
    Alaterre, Elina
    Ovejero, Sara
    Bret, Caroline
    Dutrieux, Laure
    Sika, Dassou
    Perez, Raul Fernandez
    Espeli, Marion
    Fest, Thierry
    Cogne, Michel
    Martin-Subero, Jose Ignacio
    Milpied, Pierre
    Cavalli, Giacomo
    Moreaux, Jerome
    BLOOD, 2024, 144 (05) : 496 - 509
  • [40] Single-cell transcriptome analysis of stem cells from human exfoliated deciduous teeth investigating functional heterogeneity in immunomodulation
    Yin Li
    Guangyuan Song
    Yu Jiang
    Haitao Zhao
    Yizhun Zhu
    Shanshan Song
    Lulu Wang
    Xueying Wu
    Scientific Reports, 14 (1)