Gradient-based optimal control of open quantum systems using quantum trajectories and automatic differentiation

被引:58
|
作者
Abdelhafez, Mohamed [1 ,2 ]
Schuster, David, I [1 ,2 ]
Koch, Jens [3 ]
机构
[1] Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[3] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
关键词
POPULATION TRANSFER; IMPLEMENTATION;
D O I
10.1103/PhysRevA.99.052327
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a gradient-based optimal-control technique for open quantum systems that utilizes quantum trajectories to simulate the quantum dynamics during optimization. Using trajectories allows for optimizing open systems with less computational cost than the regular density matrix approaches in most realistic optimization problems. We introduce an improved-sampling algorithm which minimizes the number of trajectories needed per optimization iteration. Together with employing stochastic gradient descent techniques, this reduces the complexity of optimizing many realistic open quantum systems to the complexity encountered with closed systems. Our optimizer harnesses automatic differentiation to provide flexibility in optimization and to suit the different constraints and diverse parameter regimes of real-life experiments. We utilize the optimizer in a variety of applications to demonstrate how the use of quantum trajectories significantly reduces the computation complexity while achieving a multitude of simultaneous optimization targets. Demonstrated targets include high state-transfer fidelities despite dissipation, faster gate times, and maximization of qubit-readout fidelity while maintaining the quantum nondemolition nature of the measurement and allowing for subsequent fast resonator reset.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Variational learning the SDC quantum protocol with gradient-based optimization
    Situ, Haozhen
    Huang, Zhiming
    Zou, Xiangfu
    Zheng, Shenggen
    QUANTUM INFORMATION PROCESSING, 2019, 18 (07)
  • [42] Exploring adiabatic quantum trajectories via optimal control
    Brif, Constantin
    Grace, Matthew D.
    Sarovar, Mohan
    Young, Kevin C.
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [43] Gradient-Based Automatic Exposure Control for Digital Image Correlation
    Chen, Jiangping
    Tao, Weijun
    SUSTAINABILITY, 2023, 15 (02)
  • [44] Using gradient-based algorithms to determine ground-state energies on a quantum computer
    Piskor, Tomislav
    Reiner, Jan-Michael
    Zanker, Sebastian
    Vogt, Nicolas
    Marthaler, Michael
    Wilhelm, Frank K.
    Eich, Florian G.
    PHYSICAL REVIEW A, 2022, 105 (06)
  • [45] Optimal gradient-based learning using importance weights
    Hochreiter, S
    Obermayer, K
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 114 - 119
  • [46] Optimal parameter estimation of open quantum systems
    嵇英华
    柯强
    胡菊菊
    Chinese Physics B, 2020, (12) : 175 - 183
  • [47] Optimal parameter estimation of open quantum systems*
    Ji, Yinghua
    Ke, Qiang
    Hu, Juju
    CHINESE PHYSICS B, 2020, 29 (12)
  • [48] Optimal time for sensing in open quantum systems
    Saleem, Zain H.
    Shaji, Anil
    Gray, Stephen K.
    PHYSICAL REVIEW A, 2023, 108 (02)
  • [49] Orbit tracking of quantum state in open quantum systems based on Lyapunov control method
    Hu, Juju
    Ke, Qiang
    Ji, Yinghua
    OPTIK, 2017, 148 : 350 - 357
  • [50] Incoherent Control of Open Quantum Systems
    Pechen A.
    Rabitz H.
    Journal of Mathematical Sciences, 2014, 199 (6) : 695 - 701