Gradient-based optimal control of open quantum systems using quantum trajectories and automatic differentiation

被引:58
|
作者
Abdelhafez, Mohamed [1 ,2 ]
Schuster, David, I [1 ,2 ]
Koch, Jens [3 ]
机构
[1] Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[3] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
关键词
POPULATION TRANSFER; IMPLEMENTATION;
D O I
10.1103/PhysRevA.99.052327
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a gradient-based optimal-control technique for open quantum systems that utilizes quantum trajectories to simulate the quantum dynamics during optimization. Using trajectories allows for optimizing open systems with less computational cost than the regular density matrix approaches in most realistic optimization problems. We introduce an improved-sampling algorithm which minimizes the number of trajectories needed per optimization iteration. Together with employing stochastic gradient descent techniques, this reduces the complexity of optimizing many realistic open quantum systems to the complexity encountered with closed systems. Our optimizer harnesses automatic differentiation to provide flexibility in optimization and to suit the different constraints and diverse parameter regimes of real-life experiments. We utilize the optimizer in a variety of applications to demonstrate how the use of quantum trajectories significantly reduces the computation complexity while achieving a multitude of simultaneous optimization targets. Demonstrated targets include high state-transfer fidelities despite dissipation, faster gate times, and maximization of qubit-readout fidelity while maintaining the quantum nondemolition nature of the measurement and allowing for subsequent fast resonator reset.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Gradient-based feedback control of quantum systems
    Gerasimos G. Rigatos
    Rigatos, G. G. (grigat@ieee.org), 1600, Allerton Press Incorporation (21): : 77 - 85
  • [2] A gradient-based approach to feedback control of quantum systems
    Rigatos, Gerasimos G.
    PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON QUANTUM, NANO AND MICRO TECHNOLOGIES (ICQNM 2011), 2011, : 12 - 17
  • [3] Sequential versus concurrent gradient-based optimal algorithms for the robust control of quantum systems
    Dionis, E.
    Sugny, D.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2022, 55 (18)
  • [4] Optimal Control for Open Quantum Systems: Qubits and Quantum Gates
    Roloff, R.
    Wenin, M.
    Poetz, W.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2009, 6 (08) : 1837 - 1863
  • [5] Stochastic optimal control of open quantum systems
    Villanueva, Aarón
    Kappen, Hilbert
    arXiv,
  • [6] Optimal thermodynamic control in open quantum systems
    Cavina, Vasco
    Mari, Andrea
    Carlini, Alberto
    Giovannetti, Vittorio
    PHYSICAL REVIEW A, 2018, 98 (01)
  • [7] Robust and optimal control of open quantum systems
    Chen, Zi-Jie
    Huang, Hongwei
    Sun, Lida
    Jie, Qing-Xuan
    Zhou, Jie
    Hua, Ziyue
    Xu, Yifang
    Wang, Weiting
    Guo, Guang-Can
    Zou, Chang-Ling
    Sun, Luyan
    Zou, Xu-Bo
    SCIENCE ADVANCES, 2025, 11 (09):
  • [8] Quantum Optimal Control via Semi-Automatic Differentiation
    Goerz, Michael H.
    Malinovsky, Vladimir S.
    Carrasco, Sebastian C.
    QUANTUM, 2022, 6
  • [9] Open quantum systems and classical trajectories
    Rebolledo, R
    STOCHASTIC ANALYSIS AND MATHEMATICAL PHYSICS (SAMP/ANESTOC 2002), 2004, : 141 - 164
  • [10] Speedup for quantum optimal control from automatic differentiation based on graphics processing units
    Leung, Nelson
    Abdelhafez, Mohamed
    Koch, Jens
    Schuster, David
    PHYSICAL REVIEW A, 2017, 95 (04)