Information Bottleneck: Theory and Applications in Deep Learning

被引:9
|
作者
Geiger, Bernhard C. [1 ]
Kubin, Gernot [2 ]
机构
[1] Know Ctr GmbH, Inffeldgasse 13-6, A-8010 Graz, Austria
[2] Graz Univ Technol, Signal Proc & Speech Commun Lab, Inffeldgasse 16c, A-8010 Graz, Austria
基金
欧盟地平线“2020”;
关键词
information bottleneck; deep learning; neural networks;
D O I
10.3390/e22121408
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Retrospectives on the Applications AI and Deep Learning in Information Fusion
    Kadar, Ivan
    SIGNAL PROCESSING, SENSOR/INFORMATION FUSION, AND TARGET RECOGNITION XXVII, 2018, 10646
  • [32] Dynamic Encoding and Decoding of Information for Split Learning in Mobile-Edge Computing: Leveraging Information Bottleneck Theory
    Alhussein, Omar
    Wei, Moshi
    Akhavain, Arashmid
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 4625 - 4631
  • [33] Information Bottleneck Approach to Spatial Attention Learning
    Lai, Qiuxia
    Li, Yu
    Zeng, Ailing
    Liu, Minhao
    Sun, Hanqiu
    Xu, Qiang
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 779 - 785
  • [34] Learnable Graph Guided Deep Multi-View Representation Learning via Information Bottleneck
    Zhao, Liang
    Wang, Xiao
    Liu, Zhenjiao
    Wang, Ziyue
    Chen, Zhikui
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (04) : 3303 - 3314
  • [35] Information Bottleneck-Based Domain Adaptation for Hybrid Deep Learning in Scalable Network Slicing
    Hu, Tianlun
    Liao, Qi
    Liu, Qiang
    Carle, Georg
    IEEE Transactions on Machine Learning in Communications and Networking, 2024, 2 : 1642 - 1660
  • [36] On The Effectiveness Of Bottleneck Information For Solving Job Shop Scheduling Problems Using Deep Reinforcement Learning
    de Puiseau, Constantin Waubert
    Zey, Lennart
    Demir, Merve
    Tercan, Hasan
    Meisen, Tobias
    PROCEEDINGS OF THE CONFERENCE ON PRODUCTION SYSTEMS AND LOGISTICS, CPSL 2023-2, 2023, : 738 - 749
  • [37] Adversarial Robustness of Deep Learning: Theory, Algorithms, and Applications
    Ruan, Wenjie
    Yi, Xinping
    Huang, Xiaowei
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 4866 - 4869
  • [38] Graph Structure Learning with Variational Information Bottleneck
    Sun, Qingyun
    Li, Jianxin
    Peng, Hao
    Wu, Jia
    Fu, Xingcheng
    Ji, Cheng
    Yu, Philip S.
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 4165 - 4174
  • [39] Applying the information bottleneck to statistical relational learning
    Fabrizio Riguzzi
    Nicola Di Mauro
    Machine Learning, 2012, 86 : 89 - 114
  • [40] Disentangled Representation Learning With Transmitted Information Bottleneck
    Dang, Zhuohang
    Luo, Minnan
    Jia, Chengyou
    Dai, Guang
    Wang, Jihong
    Chang, Xiaojun
    Wang, Jingdong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (12) : 13297 - 13310