We study the moduli space of congruence classes of isometric surfaces with the same mean curvature in 4-dimensional space forms. Having the same mean curvature means that there exists a parallel vector bundle isometry between the normal bundles that preserves the mean curvature vector fields. We prove that if both Gauss lifts of a compact surface to the twistor bundle are not vertically harmonic, then there exist at most three non-trivial congruence classes. We show that surfaces with a vertically harmonic Gauss lift possess a holomorphic quadratic differential, yielding thus a Hopf-type theorem. We prove that such surfaces allow locally a one-parameter family of isometric deformations with the same mean curvature. This family is trivial only if the surface is superconformal. For such compact surfaces with non-parallel mean curvature, we prove that the moduli space is the disjoint union of two sets, each one being either finite, or a circle. In particular, for surfaces in R-4 we prove that the moduli space is a finite set, under a condition on the Euler numbers of the tangent and normal bundles.
机构:
Univ Nacl Autonoma Mexico, Fac Ciencias, Av Univ 3000,Circuito Exterior S-N,Ciudad Univ, Cdmx 04510, MexicoUniv Nacl Autonoma Mexico, Fac Ciencias, Av Univ 3000,Circuito Exterior S-N,Ciudad Univ, Cdmx 04510, Mexico
Bayard, Pierre
Monterde, Juan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Valencia, Fac Matemat, Dr Moliner 50, E-46100 Burjassot, Valencia, SpainUniv Nacl Autonoma Mexico, Fac Ciencias, Av Univ 3000,Circuito Exterior S-N,Ciudad Univ, Cdmx 04510, Mexico
Monterde, Juan
Volpe, Raul C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Valencia, Fac Matemat, Dr Moliner 50, E-46100 Burjassot, Valencia, SpainUniv Nacl Autonoma Mexico, Fac Ciencias, Av Univ 3000,Circuito Exterior S-N,Ciudad Univ, Cdmx 04510, Mexico