Auto-Balanced Filter Pruning for Efficient Convolutional Neural Networks

被引:0
|
作者
Ding, Xiaohan [1 ]
Ding, Guiguang [1 ]
Han, Jungong [2 ]
Tang, Sheng [3 ]
机构
[1] Tsinghua Univ, Sch Software, Beijing 100084, Peoples R China
[2] Univ Lancaster, Sch Comp & Commun, Lancaster LA1 4YW, England
[3] Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years considerable research efforts have been devoted to compression techniques of convolutional neural networks (CNNs). Many works so far have focused on CNN connection pruning methods which produce sparse parameter tensors in convolutional or fully-connected layers. It has been demonstrated in several studies that even simple methods can effectively eliminate connections of a CNN. However, since these methods make parameter tensors just sparser but no smaller, the compression may not transfer directly to acceleration without support from specially designed hardware. In this paper, we propose an iterative approach named Auto-balanced Filter Pruning, where we pre-train the network in an innovative auto-balanced way to transfer the representational capacity of its convolutional layers to a fraction of the filters, prune the redundant ones, then re-train it to restore the accuracy. In this way, a smaller version of the original network is learned and the floating-point operations (FLOPs) are reduced. By applying this method on several common CNNs, we show that a large portion of the filters can be discarded without obvious accuracy drop, leading to significant reduction of computational burdens. Concretely, we reduce the inference cost of LeNet-5 on MNIST, VGG-16 and ResNet-56 on CIFAR-10 by 95.1%, 79.7% and 60.9%, respectively.
引用
收藏
页码:6797 / 6804
页数:8
相关论文
共 50 条
  • [21] CorrNet: pearson correlation based pruning for efficient convolutional neural networks
    Kumar, Aakash
    Yin, Baoqun
    Shaikh, Ali Muhammad
    Ali, Munawar
    Wei, Wenyue
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (12) : 3773 - 3783
  • [22] Filter Level Pruning Based on Similar Feature Extraction for Convolutional Neural Networks
    Li, Lianqiang
    Xu, Yuhui
    Zhu, Jie
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2018, E101D (04) : 1203 - 1206
  • [23] FILTER PRUNING BASED ON LOCAL GRADIENT ACTIVATION MAPPING IN CONVOLUTIONAL NEURAL NETWORKS
    Intraraprasit, Monthon
    Chitsobhuk, Orachat
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2023, 19 (06): : 1697 - 1715
  • [24] An optimal-score-based filter pruning for deep convolutional neural networks
    Sawant, Shrutika S.
    Bauer, J.
    Erick, F. X.
    Ingaleshwar, Subodh
    Holzer, N.
    Ramming, A.
    Lang, E. W.
    Goetz, Th
    APPLIED INTELLIGENCE, 2022, 52 (15) : 17557 - 17579
  • [25] Hardware-Aware Evolutionary Explainable Filter Pruning for Convolutional Neural Networks
    Christian Heidorn
    Muhammad Sabih
    Nicolai Meyerhöfer
    Christian Schinabeck
    Jürgen Teich
    Frank Hannig
    International Journal of Parallel Programming, 2024, 52 : 40 - 58
  • [26] Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration
    He, Yang
    Liu, Ping
    Wang, Ziwei
    Hu, Zhilan
    Yang, Yi
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 4335 - 4344
  • [27] An optimal-score-based filter pruning for deep convolutional neural networks
    Shrutika S. Sawant
    J. Bauer
    F. X. Erick
    Subodh Ingaleshwar
    N. Holzer
    A. Ramming
    E. W. Lang
    Th. Götz
    Applied Intelligence, 2022, 52 : 17557 - 17579
  • [28] Filter pruning via annealing decaying for deep convolutional neural networks acceleration
    Huang, Jiawen
    Xiong, Liyan
    Huang, Xiaohui
    Chen, Qingsen
    Huang, Peng
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (02):
  • [29] A Dual Rank-Constrained Filter Pruning Approach for Convolutional Neural Networks
    Fan, Fugui
    Su, Yuting
    Jing, Peiguang
    Lu, Wei
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 (28) : 1734 - 1738
  • [30] Hardware-Aware Evolutionary Explainable Filter Pruning for Convolutional Neural Networks
    Heidorn, Christian
    Sabih, Muhammad
    Meyerhoefer, Nicolai
    Schinabeck, Christian
    Teich, Juergen
    Hannig, Frank
    INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 2024, 52 (1-2) : 40 - 58