Efficient protocol for quantum Monte Carlo calculations of hydrogen abstraction barriers: Application to methanol

被引:12
|
作者
Swann, Ellen T. [1 ,2 ]
Coote, Michelle L. [2 ]
Barnard, Amanda S. [1 ]
Per, Manolo C. [1 ]
机构
[1] Data61 CSIRO, Mol & Mat Modelling, Door 34 Goods Shed,Village St, Docklands, Vic 3008, Australia
[2] Australian Natl Univ Canberra, ARC Ctr Excellence Elect Sci, Res Sch Chem, Canberra, ACT 2601, Australia
关键词
methanol; quantum Monte Carlo; reaction barrier; DENSITY-FUNCTIONAL THERMOCHEMISTRY; TRANSITION-STATE GEOMETRIES; GAUSSIAN-BASIS SETS; NONCOVALENT INTERACTIONS; WAVE-FUNCTIONS; PSEUDOPOTENTIALS; KINETICS; APPROXIMATION; MECHANISM; ACCURACY;
D O I
10.1002/qua.25361
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Accurate calculation of hydrogen abstraction reaction barriers is a challenging problem, often requiring high level quantum chemistry methods that scale poorly with system size. Quantum Monte Carlo (QMC) methods provide an alternative approach that exhibit much better scaling, but these methods are still computationally expensive. We describe approaches that can significantly reduce the cost of QMC calculations of barrier heights, using the hydrogen abstraction of methanol by a hydrogen atom as an illustrative example. By analysing the combined influence of trial wavefunctions and pseudopotential quadrature settings on the barrier heights, variance, and timestep errors, we devise a simple protocol that minimizes the cost of the QMC calculations while retaining accuracy comparable to large-basis coupled cluster theory. We demonstrate that this protocol is transferable to other hydrogen abstraction reactions.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Phonons of metallic hydrogen with quantum Monte Carlo
    Ly, Kevin K.
    Ceperley, David M.
    JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (04):
  • [42] Linear-scaling quantum Monte Carlo calculations
    Williamson, AJ
    Hood, RQ
    Grossman, JC
    PHYSICAL REVIEW LETTERS, 2001, 87 (24) : 246406 - 1
  • [43] Quantum Monte Carlo calculations for ground and excited states
    Needs, RJ
    Kent, PRC
    Porter, AR
    Towler, MD
    Rajagopal, G
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2002, 86 (02) : 218 - 225
  • [44] Quantum Monte Carlo Calculations for Minimum Energy Structures
    Wagner, Lucas K.
    Grossman, Jeffrey C.
    PHYSICAL REVIEW LETTERS, 2010, 104 (21)
  • [45] Quantum Monte Carlo calculations of the dimerization energy of borane
    Fracchia, Francesco
    Bressanini, Dario
    Morosi, Gabriele
    JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (09):
  • [46] Electronic structure calculations by quantum Monte Carlo methods
    Mitas, L
    PHYSICA B, 1997, 237 : 318 - 320
  • [47] Strategies for improving the efficiency of quantum Monte Carlo calculations
    Lee, R. M.
    Conduit, G. J.
    Nemec, N.
    Rios, P. Lopez
    Drummond, N. D.
    PHYSICAL REVIEW E, 2011, 83 (06):
  • [48] Inhomogeneous backflow transformations in quantum Monte Carlo calculations
    Rios, P. Lopez
    Ma, A.
    Drummond, N. D.
    Towler, M. D.
    Needs, R. J.
    PHYSICAL REVIEW E, 2006, 74 (06):
  • [49] Variational quantum Monte Carlo calculations for solid surfaces
    Bahnsen, R
    Eckstein, H
    Schattke, W
    Fitzer, N
    Redmer, R
    PHYSICAL REVIEW B, 2001, 63 (23):
  • [50] Quantum Monte Carlo calculations of neutron-α scattering
    Nollett, Kenneth M.
    Pieper, Steven C.
    Wiringa, R. B.
    Carlson, J.
    Hale, G. M.
    PHYSICAL REVIEW LETTERS, 2007, 99 (02)