Characteristics, source apportionment and reactivity of ambient volatile organic compounds at Dinghu Mountain in Guangdong Province, China

被引:142
|
作者
Wu, Fangkun [1 ,2 ,3 ]
Yu, Ye [1 ]
Sun, Jie [2 ]
Zhang, Junke [2 ]
Wang, Jian [2 ]
Tang, Guiqian [2 ]
Wang, Yuesi [2 ]
机构
[1] Chinese Acad Sci, Cold & Arid Reg Environm & Engn Res Inst, Lanzhou 730000, Peoples R China
[2] Chinese Acad Sci, Inst Atmospher Phys, Beijing 100029, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
VOCs; Source apportionment; Positive matrix factorization receptor model; OH radical loss rate; Ozone formation potential; PEARL RIVER-DELTA; COMPOUNDS VOCS; NONMETHANE HYDROCARBONS; DIURNAL-VARIATIONS; OZONE FORMATION; MIXING RATIOS; RURAL SITES; MODEL; URBAN; ATMOSPHERE;
D O I
10.1016/j.scitotenv.2015.11.069
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Volatile organic compounds (VOCs) play a very important role in the formation of ozone and secondary organic aerosols. The concentrations, compositions, and variability of VOCs were measured from2005 to 2008 at Dinghu Mountain Forest Ecosystem Research Station, a remote station in Southeast China. Weekly samples were collected in the Dinghu Mountain area and were analysed via gas chromatography-mass spectrometry. The results revealed that the total VOC concentrations decreased continuously and that the dominant VOC components were alkanes (43%) and aromatics (33%), followed by halo-hydrocarbons (12%) and alkenes (12%). The general trend of seasonal variation indicated higher concentrations in spring and lower concentrations in summer. The positive matrix factorization model was used to identify the sources of the VOCs. Seven sources were resolved by the PMF model: (1) vehicular emissions, which contributed 25% of the total VOC concentration; (2) industrial sources and regional transportation, contributing 17%; (3) paint solvent use, contributing 17%; (4) fuel evaporation, contributing 13%; (5) stationary combustion sources, contributing 12%; (6) biogenic emissions, contributing 10%; and aged VOCs, contributing only 6%. The HYSPLIT model was used to analyse the effect of pollutant transport, and the results indicated that the transport of pollutants from cities cannot be ignored. Finally, the OH radical loss rates and ozone formation potentials (OFPs) were calculated, and the results indicated isoprene to have the highest OH radical loss rate and toluene to be the largest contributor to the OFP at the Dinghu Mountain site. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:347 / 359
页数:13
相关论文
共 50 条
  • [31] Characteristics and Source Apportionment of Volatile Organic Compounds in an Industrial Area at the Zhejiang-Shanghai Boundary, China
    Cao, Xiang
    Yi, Jialin
    Li, Yuewu
    Zhao, Mengfei
    Duan, Yusen
    Zhang, Fei
    Duan, Lian
    ATMOSPHERE, 2024, 15 (02)
  • [32] Characteristics and Source Apportionment of Volatile Organic Compounds for Different Functional Zones in a Coastal City of Southeast China
    Hu, Baoye
    Xu, Hui
    Deng, Junjun
    Yi, Zhigang
    Chen, Jinsheng
    Xu, Lingling
    Hong, Zhenyu
    Chen, Xiaoqiu
    Hong, Youwei
    AEROSOL AND AIR QUALITY RESEARCH, 2018, 18 (11) : 2840 - 2852
  • [33] Comparison of receptor models for source apportionment of volatile organic compounds in Beijing, China
    Song, Yu
    Dai, Wei
    Shao, Min
    Liu, Ying
    Lu, Sihua
    Kuster, William
    Goldan, Paul
    ENVIRONMENTAL POLLUTION, 2008, 156 (01) : 174 - 183
  • [34] Characterization and source apportionment of volatile organic compounds in urban and suburban Tianjin, China
    Han Meng
    Lu Xueqiang
    Zhao Chunsheng
    Ran Liang
    Han Suqin
    ADVANCES IN ATMOSPHERIC SCIENCES, 2015, 32 (03) : 439 - 444
  • [35] Ambient volatile organic compounds at Wudang Mountain in Central China: Characteristics, sources and implications to ozone formation
    Li, Yunfeng
    Gao, Rui
    Xue, Likun
    Wu, Zhenhai
    Yang, Xue
    Gao, Jian
    Ren, Lihong
    Li, Hong
    Ren, Yanqin
    Li, Gang
    Li, Chuanxian
    Yan, Zeliang
    Hu, Ming
    Zhang, Qingzhu
    Xu, Yisheng
    ATMOSPHERIC RESEARCH, 2021, 250
  • [36] Characterization and source apportionment of volatile organic compounds in urban and suburban Tianjin, China
    Meng Han
    Xueqiang Lu
    Chunsheng Zhao
    Liang Ran
    Suqin Han
    Advances in Atmospheric Sciences, 2015, 32 : 439 - 444
  • [37] Characterization and Source Apportionment of Volatile Organic Compounds in Urban and Suburban Tianjin, China
    HAN Meng
    LU Xueqiang
    ZHAO Chunsheng
    RAN Liang
    HAN Suqin
    AdvancesinAtmosphericSciences, 2015, 32 (03) : 439 - 444
  • [38] Characterization, source apportionment, and risk assessment of ambient volatile organic compounds in urban and background regions of Hainan Island, China
    Xu, Wenshuai
    Xing, Qiao
    Pan, Libo
    Wang, Zhanshan
    Cao, Xiaocong
    Yan, Weijun
    Xie, Wenjing
    Meng, Xinxin
    Wu, Xiaochen
    Atmospheric Environment, 2024, 316
  • [39] Characterization, source apportionment, and risk assessment of ambient volatile organic compounds in urban and background regions of Hainan Island, China
    Xu, Wenshuai
    Xing, Qiao
    Pan, Libo
    Wang, Zhanshan
    Cao, Xiaocong
    Yan, Weijun
    Xie, Wenjing
    Meng, Xinxin
    Wu, Xiaochen
    ATMOSPHERIC ENVIRONMENT, 2024, 316
  • [40] Source Apportionment of Volatile Organic Compounds in Tehran, Iran
    Sarkhosh, Maryam
    Mahvi, Amir Hossein
    Yunesian, Masud
    Nabizadeh, Ramin
    Borji, Saeedeh Hemmati
    Bajgirani, Ali Ghiami
    BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY, 2013, 90 (04) : 440 - 445